Open-Jet Hurricane Testing Facility. The open-jet hurricane simulator was recently built and calibrated to create wind profiles that mimic wind characteristics over open/suburban terrain. The large-scale test section is 4 m x 4 m, capable of creating actual hurricane winds at high speeds. In terms of instruments, the facility has two cobra probes for wind velocity measurements, two load cells, five accelerometers, four magneto-rheological dampers, a shake table, a laser sensor for displacement measurements, and a 256-channel pressure measuring system to be used with the open-jet simulator independently from the instruments available at the wind tunnel.

solar building Bridge Tall Building


smart structure MR Damper shake table

Large-scale open-jet hurricane testing facility, Shake table, MR dampers, and active mass damper for research on intelligent structures

LSU Wind Tunnel Laboratory. This laboratory includes two test sections (aerodynamic and boundary-layer studies). The test sections are 2′ x 2′ x 8′ and 2′ x 3′ x 10′ (aerodynamic) and 3.5′ x 4.25′ x 25′ (boundary-layer), respectively. The laboratory has a Laser-Doppler Velocimetry (LDV)) system for point-wise measurements of up to two velocity components, cobra probes for three components of velocity measurements, a High-Resolution Digital Photography (HRDP) system for visualization studies, a pressure scanning system capable of sampling up to 128 pressure taps, six components (three forces, three moments) sting balance for aerodynamic force measurements, and computer-driven data acquisition and traversing systems.

boundary-layer wind tunnel
small open-jet hurricane simulator

LSU wind engineering testing facilities: boundary-layer wind tunnel and a small open-jet hurricane simulator

Computational Facilities

High-end PCs are available for numerical simulations. LSU has powerful computing facilities equipped with desktop computers devoted to student use. Engineering Software licenses include MATLAB, AutoCAD, ANSYS, ABAQUS, Visual BASIC, Visual C++, MS Office, and different operating environments. The high-performance computing (HPC) resources at LSU permit premium computing and support users with the best possible infrastructure to conduct their research. HPC@LSU provides system administration and consulting support for the Louisiana Optical Network Initiative (LONI) supercomputers. SuperMike was ranked second fastest in the academic world and 11th fastest in the world. 

Other Resources

3D Printer. The Department of Civil and Environmental Engineering at LSU has a 3D Printer that can create any shape with different materials. The 3D Printer is crucial for building aerodynamic features and architectural details.


Portable, Hurricane-Hardened Meteorological Towers 1
Portable, Hurricane-Hardened Meteorological Towers 2


Portable, Hurricane-Hardened Meteorological Towers. LSU operates two mobile hurricane towers – Storm 1 and Storm 2 – designed to be deployed in hurricane zones to collect meteorological data during landfalls. Storm 1 is a 10-meter tower with a structural steel lattice and a hinge in the middle to facilitate tower transportation in a folded position. The tower has outrigger legs that provide lateral support under severe windstorms. RM Young wind sensors can be installed at 2.5, 4, 5, 7.5, and 10 meters. In addition, a three-component velocity sensor and a vertical anemometer are at the 10 m height. Pressure, temperature, and relative humidity gauges are also at elevations of 2.5 and 10 meters. A precipitation gauge is at 2.5 meters. Storm 1 relies on six deep-cycle marine batteries to power sensors and data collection. These batteries provide the voltage necessary to maintain data collection from all sensors. The system sampled data from the sensors at 20 Hz onto a removable flashcard. Storm 2 is similar to Storm 1; however, it is 25-meter height.

Wind Cannon Facility at LSU. The facility includes a pneumatically actuated steel cannon with computer control to fire projectiles simulating wind-borne debris generated by hurricane-force winds. This cannon can replicate the effects of high wind speeds for different types of simulated wind-borne debris, including multiple small pebble-like missiles, typical 2" x 4" lumber missiles, and heavier (e.g., steel pipe) missiles. The facility allows accurate measurements of impact resistance and deformation of the impacted objects.

Flow Dynamics and Control Laboratory at LSU.