Publications

Publications Since Joining LSU


2021

 (47) Senadheera, D. I. I.; Arachchige, N. M. K. K; Kumar; R, and Garno, J: Heterogeneous assembly of water from the vapor phase—Physical experiments and simulations with binding trifunctional organosilanes at the vapor/solid interface, J. Chemical Physics 2021, 154, 214705.  https://doi.org/10.1063/5.0046210


(46)  Li, K; Subasinghege Don, V. K.; Gupta, C.; David, R.; Kumar, R*: Effect of Anion Identity on Ion Association and Dynamics of Sodium Ions in Non-Aqueous Glyme Based Electrolytes – OTf versus TFSI, J. Chemical Physics 2021, 154, 184505.   https://doi.org/10.1063/5.0046073


(45)  Ramos-Garces, M; Li, K; Lei, Qi; Bhattacharye, D.; Kole, S.; Zhang, Q.; Strzalka, J.; Angelopoulou, P. P.; Sakellariou, G; Kumar, R*; Arges, C. A.: Rationalizing the larger ionic activity and ionic conductivity values observed in random copolymer electrolytes over block copolymer electrolytes of the same chemistry, RSC Advances 2021, 11, 15078. https://doi.org/10.1039/D1RA02519H

2020

(44) David, R.; Tuladhar, A.; Zhang, L.; Arges, C.; Kumar, R.*; Effect of Oxidation Level on the Interfacial Water at the Graphene Oxide‑Water Interface: From Spectroscopic Signatures to Hydrogen Bonding Environment, Journal of Physical Chemistry B 2020, 124, 8167. https://doi.org/10.1021/acs.jpcb.0c05282

 

(43) Lei, Qi; Li, K.;Bhattacharya, D.; Xiao, J.; Kole, S.; Zhang, Q.; Strzalka, J.; Lawrence, J.; Kumar, R.*; Arges, C. G.; Counterion condensation or lack of solvation? Understanding the activity of ions in thin film block copolymer electrolytes, Journal of Materials Chemistry A 2020, 8,15962.  http://dx.doi.org/10.1039/D0TA04266H 

2019

 (42) Bresnahan, C. G.; David, R.; Milet, A.; Kumar, R.* Ion Pairing in HCl–Water Clusters: From Electronic Structure Investigations to Multiconfigurational Force-Field Development. J. Phys. Chem. A 2019, 123 (43), 9371–9381. https://doi.org/10.1021/acs.jpca.9b07775.

(41) Bresnahan, C. G.; Taylor-Edinbyrd, K. A.; Cleveland, A. H.; Malone, J. A.; Dange, N. S.; Milet, A.; Kumar, R.*; Kartika, R. Mechanistic Perspectives in the Regioselective Indole Addition to Unsymmetrical Silyloxyallyl Cations. J. Org. Chem. 2019, 84 (11), 7166–7174. https://doi.org/10.1021/acs.joc.9b00853.

(40) Subasinghege Don, V.; David, R.; Du, P.; Milet, A.; Kumar, R.* Interfacial Water at Graphene Oxide Surface: Ordered or Disordered? J. Phys. Chem. B 2019, 123 (7), 1636–1649. https://doi.org/10.1021/acs.jpcb.8b10987.

(39) Thompson, R. R.; Rotella, M. E.; Du, P.; Zhou, X.; Fronczek, F. R.; Kumar, R.; Gutierrez, O.; Lee, S. Siloxide Podand Ligand as a Scaffold for Molybdenum-Catalyzed Alkyne Metathesis and Isolation of a Dynamic Metallatetrahedrane Intermediate. Organometallics 2019, 38 (21), 4054–4059. https://doi.org/10.1021/acs.organomet.9b00430.

(38) Hamal, P.; Nguyenhuu, H.; Subasinghege Don, V.; Kumal, R. R.; Kumar, R.; McCarley, R. L.; Haber, L. H. Molecular Adsorption and Transport at Liposome Surfaces Studied by Molecular Dynamics Simulations and Second Harmonic Generation Spectroscopy. J. Phys. Chem. B 2019, 123 (36), 7722–7730. https://doi.org/10.1021/acs.jpcb.9b05954.

(37) Chen, M.; Pérez, R. L.; Du, P.; Bhattarai, N.; McDonough, K. C.; Ravula, S.; Kumar, R.; Mathis, J. M.; Warner, I. M. Tumor-Targeting NIRF NanoGUMBOS with Cyclodextrin-Enhanced Chemo/Photothermal Antitumor Activities. ACS Appl. Mater. Interfaces 2019, 11 (31), 27548–27557. https://doi.org/10.1021/acsami.9b08047.

(36) Islam, N. N.; Sharma, A.; Gyawali, G.; Kumar, R.; Rick, S. W. Coarse-Grained Models for Constant PH Simulations of Carboxylic Acids. J. Chem. Theory Comput. 2019, 15 (8), 4623–4631. https://doi.org/10.1021/acs.jctc.9b00159.

(35) Arges, C. G.; Li, K.; Zhang, L.; Kambe, Y.; Wu, G.-P.; Lwoya, B.; Albert, J. N. L.; Nealey, P. F.; Kumar, R.* Ionic Conductivity and Counterion Condensation in Nanoconfined Polycation and Polyanion Brushes Prepared from Block Copolymer Templates. Mol. Syst. Des. Eng. 2019, 4 (2), 365–378. https://doi.org/10.1039/C8ME00081F.

2018

(34) Saputra, M. A.; Nepal, B.; Dange, N. S.; Du, P.; Fronczek, F. R.; Kumar, R.*; Kartika, R. Enantioselective Functionalization of Enamides at the β-Carbon Center with Indoles. Angew. Chemie Int. Ed. 2018, 57 (47), 15558–15562. https://doi.org/10.1002/anie.201808764.

(33) Galle Kankanamge, S. R.; Li, K.; Fulfer, K. D.; Du, P.; Jorn, R.; Kumar, R.*; Kuroda, D. G. Mechanism behind the Unusually High Conductivities of High Concentrated Sodium Ion Glyme-Based Electrolytes. J. Phys. Chem. C 2018, 122 (44), 25237–25246. https://doi.org/10.1021/acs.jpcc.8b06991.

(32) Du, P.; Rick, S. W.; Kumar, R.* Towards a Coarse-Grained Model of the Peptoid Backbone: The Case of N , N -Dimethylacetamide. Phys. Chem. Chem. Phys. 2018, 20 (36), 23386–23396. https://doi.org/10.1039/C8CP03283A.

(31) Zhang, X.; Kumar, R.; Kuroda, D. G. Acetate Ion and Its Interesting Solvation Shell Structure and Dynamics. J. Chem. Phys. 2018, 148 (9), 094506. https://doi.org/10.1063/1.5019363.

(30) Li, K.; Galle Kankanamge, S. R.; Weldeghiorghis, T. K.; Jorn, R.; Kuroda, D. G.; Kumar, R.* Predicting Ion Association in Sodium Electrolytes: A Transferrable Model for Investigating Glymes. J. Phys. Chem. C 2018, 122 (9), 4747–4756. https://doi.org/10.1021/acs.jpcc.7b09995.

2017

(29) Jorn, R.; Kumar, R.* Breaking the Scales: Electrolyte Modeling in Metal-Ion Batteries. Electrochem. Soc. Interface 2017, 26 (1), 55–59. https://doi.org/10.1149/2.F06171if.

(28) Lutz, J. A.; Subasinghege Don, V.; Kumar, R.; Taylor, C. M. Influence of Sulfur on Acid-Mediated Enamide Formation. Org. Lett. 2017, 19 (19), 5146–5149. https://doi.org/10.1021/acs.orglett.7b02432.

(27) Gyawali, G.; Sternfield, S.; Kumar, R.; Rick, S. W. Coarse-Grained Models of Aqueous and Pure Liquid Alkanes. J. Chem. Theory Comput. 2017, 13 (8), 3846–3853. https://doi.org/10.1021/acs.jctc.7b00389.

(26) Taylor-Edinbyrd, K.; Li, T.; Kumar, R.* Effect of Chemical Structure of S-Nitrosothiols on Nitric Oxide Release Mediated by the Copper Sites of a Metal Organic Framework Based Environment. Phys. Chem. Chem. Phys. 2017, 19 (19), 11947–11959. https://doi.org/10.1039/C7CP01704A.

(25) Du, P.; Li, A.; Li, X.; Zhang, Y.; Do, C.; He, L.; Rick, S. W.; John, V. T.; Kumar, R.*; Zhang, D. Aggregation of Cyclic Polypeptoids Bearing Zwitterionic End-Groups with Attractive Dipole–Dipole and Solvophobic Interactions: A Study by Small-Angle Neutron Scattering and Molecular Dynamics Simulation. Phys. Chem. Chem. Phys. 2017, 19 (22), 14388–14400. https://doi.org/10.1039/C7CP01602F.

2016

(24) Wahlers, J.; Fulfer, K. D.; Harding, D. P.; Kuroda, D. G.; Kumar, R.*; Jorn, R. Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study. J. Phys. Chem. C 2016, 120 (32), 17949–17959. https://doi.org/10.1021/acs.jpcc.6b06160.

(23) Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.; Sheffield, W.; Kumar, R.; Ragains, J. R. A Visible-Light-Promoted O -Glycosylation with a Thioglycoside Donor. Angew. Chemie Int. Ed. 2016, 55 (22), 6515–6519. https://doi.org/10.1002/anie.201601566.

2015

(22) Tse, Y.-L. S.; Chen, C.; Lindberg, G. E.; Kumar, R.; Voth, G. A. Propensity of Hydrated Excess Protons and Hydroxide Anions for the Air–Water Interface. J. Am. Chem. Soc. 2015, 137 (39), 12610–12616. https://doi.org/10.1021/jacs.5b07232.

(21) Li, T.; Taylor-Edinbyrd, K.; Kumar, R.* A Computational Study of the Effect of the Metal Organic Framework Environment on the Release of Chemically Stored Nitric Oxide. Phys. Chem. Chem. Phys. 2015, 17 (36), 23403–23412. https://doi.org/10.1039/C5CP02926K.

(20) Li, T.; Kumar, R. Role of Excited State Solvent Fluctuations on Time-Dependent Fluorescence Stokes Shift. J. Chem. Phys. 2015, 143 (17), 174501. https://doi.org/10.1063/1.4934661.

(19) Soniat, M.; Kumar, R.; Rick, S. W. Hydrated Proton and Hydroxide Charge Transfer at the Liquid/Vapor Interface of Water. J. Chem. Phys. 2015, 143 (4), 044702. https://doi.org/10.1063/1.4926831.

(18) Li, T.; Cui, Y.; Mathaga, J.; Kumar, R.*; Kuroda, D. G. Hydration and Vibrational Dynamics of Betaine (N,N,N-Trimethylglycine). J. Chem. Phys. 2015, 142 (21), 212438. https://doi.org/10.1063/1.4919795.

(17) Cao, Z.; Kumar, R.; Peng, Y.; Voth, G. A. Hydrated Proton Structure and Diffusion at Platinum Surfaces. J. Phys. Chem. C 2015, 119 (26), 14675–14682. https://doi.org/10.1021/jp5129244.

(16) Kumar, R.*; Knight, C.; Wick, C. D.; Chen, B. Bringing Reactivity to the Aggregation-Volume-Bias Monte Carlo Based Simulation Framework: Water Nucleation Induced by a Reactive Proton. J. Phys. Chem. B 2015, 119 (29), 9068–9075. https://doi.org/10.1021/jp508749x.

2014

(15) Cao, Z.; Kumar, R.; Peng, Y.; Voth, G. A. Proton Transport under External Applied Voltage. J. Phys. Chem. B 2014, 118 (28), 8090–8098. https://doi.org/10.1021/jp501130m.

(14) Kulkarni, S. A.; Lyles, V. D.; Serem, W. K.; Lu, L.; Kumar, R.; Garno, J. C. Solvent-Responsive Properties of Octadecyltrichlorosiloxane Nanostructures Investigated Using Atomic Force Microscopy in Liquid. Langmuir 2014, 30 (19), 5466–5473. https://doi.org/10.1021/la500799u.

(13) Chuntonov, L.; Kumar, R.; Kuroda, D. G. Non-Linear Infrared Spectroscopy of the Water Bending Mode: Direct Experimental Evidence of Hydration Shell Reorganization? Phys. Chem. Chem. Phys. 2014, 16 (26), 13172–13181. https://doi.org/10.1039/C4CP00643G.

Publications Prior to Joining LSU


(12) Kumar, R.; Knight, C.; Voth, G. A. Exploring the Behaviour of the Hydrated Excess Proton at Hydrophobic Interfaces. Faraday Discuss. 2013, 167, 263. https://doi.org/10.1039/c3fd00087g.

(11) Jorn, R.1; Kumar, R.1; Abraham, D. P.; Voth, G. A. Atomistic Modeling of the Electrode–Electrolyte Interface in Li-Ion Energy Storage Systems: Electrolyte Structuring. J. Phys. Chem. C 2013, 117 (8), 3747–3761. https://doi.org/10.1021/jp3102282 (1contributed equally).

(10) Petersen, M. K.; Kumar, R.; White, H. S.; Voth, G. A. A Computationally Efficient Treatment of Polarizable Electrochemical Cells Held at a Constant Potential. J. Phys. Chem. C 2012, 116 (7), 4903–4912. https://doi.org/10.1021/jp210252g.

(09) Kumar, R.; Keyes, T. The Relation between the Structure of the First Solvation Shell and the IR Spectra of Aqueous Solutions. J. Biol. Phys. 2012, 38 (1), 75–83. https://doi.org/10.1007/s10867-011-9243-7.

(08) Wang, F.-F.; Kumar, R.; Jordan, K. D. A Distributed Point Polarizable Force Field for Carbon Dioxide. Theor. Chem. Acc. 2012, 131 (3), 1132. https://doi.org/10.1007/s00214-012-1132-z.

(07) Kumar, R.; Keyes, T. The Polarizing Forces of Water. Theor. Chem. Acc. 2012, 131 (3), 1197. https://doi.org/10.1007/s00214-012-1197-8.

(06) Kumar, R.; Keyes, T. Classical Simulations with the POLIR Potential Describe the Vibrational Spectroscopy and Energetics of Hydration: Divalent Cations, from Solvation to Coordination Complex. J. Am. Chem. Soc. 2011, 133 (24), 9441–9450. https://doi.org/10.1021/ja201695d.

(05) Kumar, R.; Wang, F.-F.; Jenness, G. R.; Jordan, K. D. A Second Generation Distributed Point Polarizable Water Model. J. Chem. Phys. 2010, 132 (1), 014309. https://doi.org/10.1063/1.3276460.

(04) Kumar, R.; Christie, R. A.; Jordan, K. D. A Modified MSEVB Force Field for Protonated Water Clusters †. J. Phys. Chem. B 2009, 113 (13), 4111–4118. https://doi.org/10.1021/jp8066475.

(03) Kumar, R.; Skinner, J. L. Water Simulation Model with Explicit Three-Molecule Interactions. J. Phys. Chem. B 2008, 112 (28), 8311–8318. https://doi.org/10.1021/jp8009468.

(02) Auer, B.; Kumar, R.; Schmidt, J. R.; Skinner, J. L. Hydrogen Bonding and Raman, IR, and 2D-IR Spectroscopy of Dilute HOD in Liquid D2O. Proc. Natl. Acad. Sci. 2007, 104 (36), 14215–14220. https://doi.org/10.1073/pnas.0701482104.

(01) Kumar, R.; Schmidt, J. R.; Skinner, J. L. Hydrogen Bonding Definitions and Dynamics in Liquid Water. J. Chem. Phys. 2007, 126 (20), 204107. https://doi.org/10.1063/1.2742385.