

Physical property measurement of primary reference fuels and blends using a droplet generator and strobed imaging

> Wanjun Dang and <u>Shyam Menon</u> Louisiana State University

APS – 71st Annual DFD meeting, Nov 18-20, 2018, Atlanta, GA Research supported by: Department of Energy Co-Optima program

Motivation

- Department of Energy Co-Optima initiative
 - "Accelerate the introduction of affordable, scalable, and sustainable high performance fuels for use in high-efficiency, low-emission engines"
 - Do we optimize fuels for advanced engines?
 - Do we optimize engines for emerging fuels?
 - How about we Co-optimize!

µL-Fuel Ignition Tester ⇔ Micro-FIT

Co-Optimization of Fuels & Engines

Fuel delivery

Piezo-electric droplet generator

⁴ http://www.microfab.com/assemblies

- Droplet shape oscillations
 - For an isolated liquid drop undergoing small amplitude axisymmetric oscillation, drop shape $R(\theta, t)$ can be described by^{1,2},

$$R(\theta, t) = R_0 + \sum_{n=2}^{\infty} a_n(t) P_n(\cos\theta)$$

LOVE PURPLE

Where θ is the polar angle, R_0 is the initial radius, P_n are Legendre polynomials and $a_n(t)$ are time-dependent surface mode amplitude coefficients given by,

$$a_n(t) = e^{-\beta_n t} \cos\left(\sqrt{\omega_n^2 - \beta_n^2} t\right) \text{ where,}$$

$$\omega_n^2 = n(n-1)(n+1) \frac{\sigma}{\rho R_0^3} \text{ and } \beta_n = (n-1)(2n+1) \frac{\mu}{\rho R_0^2}$$

- Measuring the decay rate β_n , gives **viscosity** μ
- Measuring the eigenfrequency ω_n , gives surface tension σ

¹Staat, H. J. et al. (2017). Ultrafast imaging method to measure surface tension and viscosity of inkjet-printed droplets in flight. *Experiments in fluids*, 58(1), 2.

²Lamb H (1932) Hydrodynamics. Cambridge University Press, Cambridge

Co-Optimization of Fuels & Engines

Experiment

- Droplet generation at 1 atm pressure and 20°C
 - Nozzle diameter = 30 µm
 - Droplet imaged using strobe imaging 1 µs apart
 - Camera & optics resolution ~ 2-3 µm/pixel

Data processing

- 1. Image batch cropping and processing
- 2. Droplet edge detection using "Subpixel edge location¹"
- 3. Co-ordinates of droplet centroid (MATLAB function)
- 4. Droplet radius calculated as function of polar angle at each location/time

¹Trujillo-Pino, A., Krissian, K., Alemán-Flores, M., & Santana-Cedrés, D. (2013). Accurate subpixel edge location based on partial area effect. Image and Vision Computing, 31(1), 72-90.

7

Data processing

5. Least-square curve fitting to solve for $a_2(t)$ – time-dependent surface mode amplitude coefficients, *n* is the mode number, P_n are Legendre polynomials

$$R(\theta, t) = R_0 + \sum_{n=2}^{\infty} a_n(t) P_n(\cos\theta)$$

- 6. $a_0(t) = R_0$, where R_0 is the equilibrium radius
- 7. Use $a_2(t)$ to find the decay rate β_n
- 8. Perform Discrete Fourier Transform (DFT) to get eigen-frequency of the shape mode f_2
- 9. Compute viscosity and surface tension

Co-Optimization of Fuels & Engines

Test cases

- Primary reference fuels:
 - *Iso*-octane: Octane rating of 100 \rightarrow Most resistant to auto-ignition
 - *n*-heptane: Octane rating of 0 \rightarrow Least resistant to auto-ignition

Test Conditions

Ambient temperature = 20° C Pressure = 1 atm Droplet generation at 720Hz Applied voltage = 33-34 V Dwell time = 27-32 µs Rise time = 5 µs Fall time = 5 µs Back pressure = -0.3 in. Hg

Case	<i>lso</i> -octane	<i>n</i> -heptane
1	100	0
2	75	25
3	50	50
4	25	75
5	0	100

100% - *Iso*-octane

100% - *n*-heptane

11

Correlations for properties of PRF blends

Co-Optimization of Fuels & Engines

- $\rho_{mixture} = AX_1^2 + BX_1 + C$
- $v_{mixture} = X_1^3 ln v_1 + 3X_1^2 X_2 v_{1,2} + 3X_1 X_2^2 ln v_{2,1} + X_2^3 ln v_2 ln \left(X_1 + \frac{X_2 M_2}{M_1}\right) + 3X_1^2 X_2 ln \left(\frac{1}{3}\left(2 + \frac{M_2}{M_1}\right)\right) + 3X_1 X_2^2 ln \left(\frac{1}{3}\left(1 + 2\frac{M_2}{M_1}\right)\right) + X_2^3 ln(\frac{M_2}{M_1})$
- $\mu_{mixture} = \nu_{mixture} * \rho_{mixture}$
- X_1, X_2 are mole fraction, v_1, v_2 are pure component viscosities, M_1, M_2 are molecular masses

¹Dianne J. Luning Prak; Jim S. Cowart; Paul C. Trulove; J. Chem. Eng. Data 2014, 59, 3842-3851

Mixture viscosity

Mixture surface tension

Updated results

- Switching method between fuels was not proper. Fuel samples were likely not of expected concentration.
- System is air purged between samples for 2 minutes to ensure complete removal of previous fuel sample.

	Dynamic	Surface Tension	
	Viscosity(mPa.S)	(mN/m)	
Pure Iso-octane	0.565	32.37	
Pure n-heptane	0.5428	34.62	

LOVE PURPLE

Error sources

• Uncertainty in droplet size

$$R(\theta, t) = R_0 + \sum_{n=2}^{\infty} a_n(t) P_n(\cos\theta)$$

• Droplet motion during flight

		Units
Strobe exposure	5	μs
Droplet velocity	1.2	m/s
Distance traveled	6	μm

• Non-repeatability of setup

Conclusions

- A micro-liter fuel delivery apparatus using a piezo-electric droplet generator is used to measure physical properties surface tension and viscosity.
- Fuel physical properties are estimated using droplet shape oscillations.
- Initial results for viscosity and surface tension are encouraging.
- Current efforts focus on reducing errors by:
 - Better synchronization between camera & strobe
 - Replacement of strobe by high powered short duration laser pulse

SU Acknowledgement

This research was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices.

