

Investigation of a piezoelectric droplet delivery method for fuel injection and physical property evaluation

> Wanjun Dang, Wei Zhao, Shyam Menon Louisiana State University

APS - 70th Annual DFD meeting, Nov 20-22, 2017, Denver, CO Research supported by: Department of Energy Co-Optima program

Motivation

- Department of Energy Co-Optima initiative
 - "Accelerate the introduction of affordable, scalable, and sustainable high performance fuels for use in high-efficiency, low-emission engines"
 - Do we optimize fuels for advanced engines?
 - Do we optimize engines for emerging fuels?
 - How about we Co-optimize!

Fuel research at LSU

Co-Optimization of Fuels & Engines

Co-Optimization of Fuels & Engines

- Fuel Delivery: Low vapor pressure liquid fuels with flowrates ~ 1 μl/min, 1-10 atm pressure
- 2. Fuel Property Measurement: Surface tension, viscosity, ...

$$D_{drop}, V_{drop} = f(V, PZT_{properties}, Fuel_{properties})$$

- **3. Mixture Preparation**: Mix with air to produce mixture of desired stoichiometry
- 4. Fuel Vaporization Observation: Distillation curve, boiling point, ...

$$D_{drop} = f(Fuel_{properties}, Air_{properties})$$

Micro-FIT

Approach – Fuel Delivery

- Piezo-electric droplet generator for fuel delivery
 - Can achieve required flow rates
 - Produces droplets \rightarrow can use to measure fuel metrics

Fuels & Engines

Approach – Fuel Delivery

LOVE PURPLE

Piezo-electric droplet generator

http://www.microfab.com/assemblies

Results – Fuel Delivery

- Droplet generation at 1 atm pressure
 - Water; Iso-propanol; Iso-octane
 - Droplet size & velocity calculated using ImageJ software

Machine vision camera with strobed delay

Results – Fuel Delivery

- Effect of applied voltage
 - ↑ Voltage -- ↑ Droplet velocity

Strobe delay [µs]

LOVE PURPLE

Results – Fuel Delivery

• Effect of dwell time

Fuels & Engines

Fuels & Engines

PZT model

Droplet formation model

Co-Optimization of Fuels & Engines

Analytical modeling of piezo-electric droplet generation

- 1-D axisymmetric, Pressure & velocity $\rightarrow f(r, z)$
- No outer radial stress of the PZT tube
- Neglect shear stresses
- Neglect longitudinal motion of tube
- Plane strain assumption

Shin, D. Y., Grassia, P., & Derby, B. (2004)

Co-Optimization of Fuels & Engines

- Analytical modeling of piezo-electric droplet generation
 - Continuity and N-S equations evaluated at points $1 \rightarrow 4$
 - Match pressure and velocity at points $1 \rightarrow 4$
 - Apply B.C's & input waveform profile
 - Solve for fluid velocity at nozzle exit using Maple

Results – Property Measurement

- Fuel Ethylene glycol
- Nozzle-diameter 60μm
- Sine wave actuation voltage (Amplitude = 80 V)
- Period = 30 µs

Fuels & Engines

- Bipolar Pulse Waveform
- PZT material properties & dimensions from reference

Physical property	Value	Unit
Dynamic viscosity	0.02	Pa.s
Density	1113	kg/m ³
Speed of sound	1680	m/s
Surface tension	0.05	N/m

Shin, D. Y., Grassia, P., & Derby, B. (2004)

Results – Property Measurement

- Co-Optimization of Fuels & Engines
 - Maximum velocity at nozzle exit
 - Velocity as a function of radius at t=15µs

Conclusions

- A piezoelectric droplet generator is being implemented as a high vaporpressure fuel delivery system to a micro-combustor.
- Droplets generated at 1 atm with water, iso-propanol, & iso-octane.
- Effects of varying voltage & dwell time on droplet size & velocity studied.
- Implementing a model to calculate droplet size & velocity from PZT generator.
- Initial results for fluid velocity at nozzle exit look promising.

Nozzle Part

30

LOVE PURPLE

Future Work

- Droplet generation at higher pressures
- Air-fuel mixing manifold with optical access
- Extension of model to calculate droplet size & velocity
- Reverse problem of computing fuel properties

Acknowledgement

This research was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices.

