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Motivation

 Traditional Jet-In-Crossflow (JICF) has been studied extensively for subsonic
and supersonic flows
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Motivation
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Project Motivation

Breakup and atomization
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Traditional JICF

We seek to examine the key differences
in breakup behavior between liquid
injection into a continuous supersonic
flow and injection into a discontinuous
flow.

Liu, H., Guo, Y., & Lin, W. (2016). Numerical
simulations of transverse liquid jet to a
supersonic crossflow using a pure two-fluid
model. Advances in Mechanical Engineering,
8(1), 1687814016629341.
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Noise Reduction in Free Jets

* Focused on minimizing noise production in mixing
layer between free jet and ambient

Angled Injectors

Norum, T. D. (n.d.). Reductions in Multi-component Jet Noise by Water
Injection. American Institute of Aeronautics and Astronautics.

* Focused on minimizing noise production
by breaking up internal shock structure
and locating sound source locations

.. ~ ,_ ae Zaman, K., & Podboy, G. (2010, June). Effect of

_i._ microjet injection on supersonic jet noise. In 16th
" h I? . .a ¥ AIAA/CEAS Aecroacoustics Conference (p. 4022).
- ' Previous work lacks examination of
primary breakup regime and liquid

penetration distance, that is the focus
of the current work

LovE PURPLE




Pl
ock T

Disk
O
High = ; X Shock Triple

Pressure

Pressure
Reservoir

N / )
S TS Poes Disk
N Shock Triple Point — R

74

Underaxpanded: Flow Turns Flow Turms
P, >R Parallel Outward  * paraiiel
Aerospaceweb. Available  online:

http://www.aerospaceweb.org/question/
propulsion/q0224.shtml; (accessed on 14
August 2015).

LovE PURPLE



ACE
s v o

%

" faSPANS

w1STa,

r
o)
=
o
-
@
([
v
m]
=
3
vy
q
®
)
2
=
O
=
—
O
m

ligaments
e, "
column . * e a .
breakup 0 .Q. “ o e
e e R A
Q ry o L] . ]
air .G "' v
] * . . '
— * " .
. droplets

liquid

column surface breakup

liquid
10000
o
§ 1000 L Surface /
-E E Breakup pgv‘gle val _ H _ We
x i Tl WeG = — ReD — Oh = — R
= 100 ¢ o 1z \J poD; e
E F Column - -
2 Breakup Tl
2 o 2 P,D
E | Enhanced plvl = —l l
1 L mhance Ba Multi-Mode = ——- -

"q'; £ :?E:Lir: Brfakup Breakup Shear Breakup pg vj Pg Dg

0.1 1 1 L1l 1 1 I 1 1 |

1 10 100 1000
Gas Weber number, We,
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‘% Cold Flow Test Rig Overview NA
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w - otand Configuration and
A Measurement
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» After ambient conditions are entered, data for each
run is stored during operation and immediately

stored.
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7% e Airis supplied to the chamber
. | at a constant flow rate of

. 54SCFM at a static pressure of

-~ 1| 73psig measured in a 3/8”
B B ] —t ] SCH40 pipe section for all test
. cases
A e Water back pressure is varied
L from 20-100psig and nozzle
R | diameters of 0.06”, 0.04” and
| 0.03” are examined
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Schoegl, I., Pisano, AJ, & Sedky, G. (2016). Development of a compact focusing
color schlieren technique. In 54th AIAA aerospace sciences meeting, San Diego, CA,

USA, AIAA (Vol. 1765).

Fillingham, Patrick & Murali, Harikrishnan & Novosselov, Igor. L P

(2017). Non-Dimensional Parameter for Characterization of Wall OVE I'URPLE
Shear Stress from Underexpanded Axisymmetric Impinging Jets.

Journal of Fluids Engineering. 139.10.1115/1.4037035.
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High speed camera and test
section

500W halogen bulb placed ~5m away

at ~10° angle provides diffuse indirect
light source

Photron SA3 high-speed camera
60-200,000fps

20,000fps used for primary
breakup imaging

2,000fps used for penetration
imaging

54mm lens @ f/1.4

https://www.techimaging.com/products/legacy/legacy-high-speed/product/photron-fastcam-
sa3
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Gas Phase Characterization
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Density Gradient Magritude
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Good agreement between CFD
and experiment for shock
structure and inlet conditions
Threshold of 5mins combined
run time for each tank was set
to keep tank pressure
deviation <5%

400
0

CFD results courtesy of Daniel
Allgood, NASA SSC
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Liquid Phase Characterization

/) i AN
Nozzle 1 We=6138 Oh=.0032
D=.06"
Injection 20 30 40 50 60 70 80 90 100
Pressure
[psig]
Measured 0.4753 0.593 0.693 [0.791 [0.865 [0.918 [1.00 [1.05 [1.12
Flowrate
[GPM]
Measured 16.44 20.51 23.97 | 2735 | 29.91 | 31.75 | 34.58 | 36.31 | 38.73
Velocity
[m/s]
Calculated | 16.63 20.37 23.52 | 2630 | 28.81 | 31.12 | 33.26 | 3528 | 37.19 _— Cp 2AP
Velocity B /1 — Bz P
[m/s]
% Error 1.18 0.67 -1.86 |-3.87 [-3.70 [-1.99 |-3.82 |-2.84 |-3.99 [
q 0.624 0.937 1.249 | 1.561 | 1.873 | 2.185 | 2.497 | 2.810 | 3.122
Rep 24064 29472 34032 | 38049 | 41680 | 45020 | 48128 | 51048 | 53810 Shape factor

* Flow tests were completed
on nozzle 1 to confirm
velocity measurements,
these were used on all
other nozzles
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Shock Structure
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e Shock structure differs
from traditional jet in
crossflow due to
presence of internal
Mach diamonds

»
*

Bow shock Bow shock merged with
oblique shocks

W |

Bow shock

Obligue shocks flattened by
bow shock

Nozzle 1, q=1.873
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Bow Shock

\’_-

Nozzle 1, g=0.624 (top), g=0.937 (bottom)
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Yates, C. (1971). Liquid injection into supersonic

airstreams. In 7th Propulsion Joint Specialist
Conference (p. 724).

* No presence of separation region or

shock interaction
e Visible signs of flow turning
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Low momentum ratio characterized by
strong shearing of coherent liquid jet, no
long ligaments of fluid extend to secondary
breakup section

High momentum ratio characterized by
surface stripping/tearing. This allows for
extension of fluid ligaments prior to
secondary breakup
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Spray Edge Penetration/Detection NA

* Edge location is
important indicator
of dominant flow
phase, is an
important
parameter of study
for CFD validation

Step 1 - Original Raw Image
n
Step 4 - 2-D Median Filtered Image

* More prominent
edge variation at
higher momentum
ratios
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Average Spray Location

ZasPNXX
q=0.624 q=1.561 q=3.122
* Clear strong
Nozzle 1
D-.06” dependence on
diameter ratio
e Appearance of
Nozzle 2 region of sudden
D=.04"
vapor phase
expansion, more
prevalent at lower
Nozzle 3 momentum ratIOS
Do and smaller

21

diameter ratio
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Global Spray Penetration
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Local Gas Phase Spray Penetration NA
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* Nozzle 1
* Nozzle 2
* Nozzle 3

—Yates

More variation at smaller
diameter ratio, can better be
compared with existing
empirical correlations
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Conclusions and Future Work
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*  Successfully constructed cold * Showed qualitative characteristics * Examined primary breakup region
flowing test stand capable of for gas phase shockwave structure in context of traditional JICF regime
steady operation at varied injection locations diagram, extended to higher Weber

* Characterized gas and liquid * Lack of separation number
phases shockwave and locations of * Used POD to extract primary
subsonic flow not present in modes which agree with
traditional JICF literature
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Conclusions

* Spray edge detection yielded .
results for spray penetration
globally and locally in projected gas
phase boundary
e Global results vary heavily
from correlations for

traditional JICF
* Strong Dependence on jet
diameter ratio is shown

PDPA was used to gain statistical
information about liquid droplet
size and velocity downstream

Edge of air jet

« 20psig
* 30 psig

* 60 psig
= 70 psig
* 80 psig
* 90 psig
* 100 psig

40 psig-
50psig

20

x/d, x/dq
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Centerline data showed large
deviation from expected gas
phase velocity. This is likely
due to large expected
droplet size and turning of
the gas flow.
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200

200

200

Preliminary CFD work shows
significant flow weakening and
turning downstream of liquid
injection.

CFD Work in Progress

(Not same condition as experiment)

S DR

CFD results courtesy of Daniel
Allgood, NASA SSC
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Future Work

A}

*  Further explore the dependency on * Expand PDPA measurements totwo < Test and characterize hybrid rocket

diameter ratio components and map spray to supply combusting gas flow
* Development of a new behavior in 2D *  Will allow for better
correlation or physical *  Will allow for better matching of physical
parameter for momentum identification of mean spray properties to those at SSC
ratio should be determined path after gas phase flow * Many of the diagnostics used
turning and facilitate CFD already can again be applied
validation

q=3.122

Nozzle 1
D=.06"

Traverse
vertical axis

Optical
receiver
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