Prepare Students for the Challenges of Research: Teach Them *How* to Learn!

Saundra Yancy McGuire, Ph.D.
Retired Asst. Vice Chancellor & Professor of Chemistry
Director Emerita, Center for Academic Success
Louisiana State University

Why is Research Challenging?

It requires many skills in different domains

- Cognitive Thinking Skills
 - Information Processing
 - Problem Solving
- Affective Attitudes and Feelings

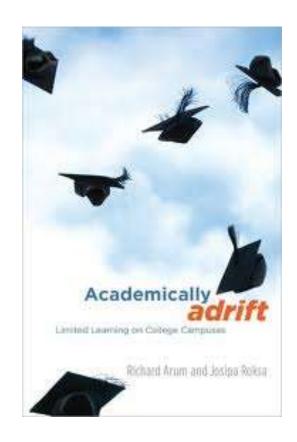
Confidence

Curiosity

Enthusiasm

Psychomotor – manual or physical skills

Performing Laboratory Procedures


Handling Instruments

Cognitive Skills Needed for Research*

- Deep and broad knowledge base
- Ability to read, comprehend, and evaluate research literature
- Ability to critically evaluate experiments and results
- Creativity and Imagination
- Ability to interpret and question data
- Ability to pose questions and propose studies to answer the questions

^{*}From survey of LSU research mentors, March 2008

But many students have not developed these abilities

Arum, Richard and Roksa, Josipa. 2011. *Academically Adrift: Limited Learning on College Campuses*. Chicago: University of Chicago Press.

But they can develop them if we...

Teach students how to learn

Help them develop the right mindset

Metacognition: The Key to Improving Cognitive Skills

The ability to:

- think about one's own thinking
- be consciously aware of oneself as a problem solver
- monitor, plan, and control one's mental processing (e.g. "Am I understanding this material, or just memorizing it?")
- accurately judge one's level of learning

Why haven't most students developed metacognitive skills?

According to data from the entering class of 2011...*

- It wasn't necessary in high school
 - 60.5% of 2011 (down from 63% in 2010) entering first year students spent less than six hours per week doing homework in 12th grade.
 - 49.7% of these students said they graduated from high school with an "A" average.*
- Students' confidence level is high
 - 70.9 % believe their academic ability is above average or in the highest 10 percent among people their age

*2011 Higher Education Research Institute Study

Faculty Must Help Students Make the Transition to College

Help students identify and close "the gap"

current behavior current results

productive behavior desired results

Reflection Questions

 What's the difference, if any, between studying and learning?

- For which task would you work harder?
 - A. Make an A on the test
 - B. Teach the material to the class

The Story of Two Students

Travis, junior psychology student
 47, 52, 82, 86
 B in course

Dana, first year physics student
 80, 54, 91, 97, 90 (final)
 A in course

Travis, junior psychology student 47, 52, 82, 86

Problem: Reading Comprehension

Solution: Preview text before reading*

Develop questions*

Read one paragraph at a time and paraphrase information

First Voyage of Christopher Columbus

WITH HOCKED GEMS FINANCING HIM/ OUR HERO BRAVELY DEFIED ALL SCORNFUL LAUGHTER/ THAT TRIED TO PREVENT HIS SCHEME/ YOUR EYES DECEIVE/ HE HAD SAID/ AN EGG/ NOT A TABLE/ CORRECTLY TYPIFIES THIS UNEXPLORED PLANET/ NOW THREE STURDY SISTERS SOUGHT PROOF/ FORGING ALONG SOMETIMES THROUGH CALM VASTNESS/YET MORE OFTEN OVER TURBULENT PEAKS AND VALLEYS/ DAYS BECAME WEEKS/ AS MANY DOUBTERS SPREAD FEARFUL RUMORS ABOUT THE EDGE/ AT LAST/ FROM NOWHERE/ WELCOME WINGED CREATURES APPEARED/ SIGNIFYING MOMENTOUS SUCCESS

Dooling, J.D. and Lachman, R. Effects of Comprehension on Retention of Prose, *Journal of Experimental Psychology,* (1971), Vol. 88, No. 2, 216-222

Anticipatory set CAN interfere!

Let's look at the car on the next slide...

Is this a 2-door or 4-door car?

Dana, first year physics student 80, 54, 91, 97, 90 (final)

Problem: Memorizing formulas and using www.cramster.com

Solution: Solve problems with no external aids and test mastery of concepts

Why the Fast and Dramatic Increase?

It's all about the *strategies*, and getting *them* to *engage their brains*!

Counting Vowels in 45 seconds

How accurate are you?

Count all the vowels in the words on the next slide.

Dollar Bill Cat Lives

Dice Bowling Pins

Tricycle Football Team

Four-leaf Clover Dozen Eggs

Hand Unlucky Friday

Six-Pack Valentine's Day

Seven-Up Quarter Hour

Octopus

How many words or phrases do you remember?

Let's look at the words again...

What are they arranged according to?

Dollar Bill

Dice

Tricycle

Four-leaf Clover

Hand

Six-Pack

Seven-Up

Octopus

Cat Lives

Bowling Pins

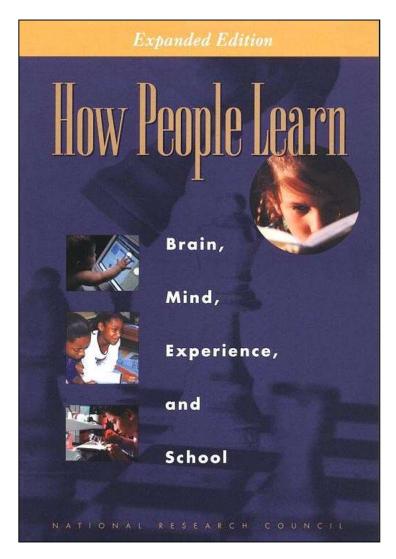
Football Team

Dozen Eggs

Unlucky Friday

Valentine's Day

Quarter Hour


NOW, how many words or phrases do you remember?

What were two major *differences* between the two attempts?

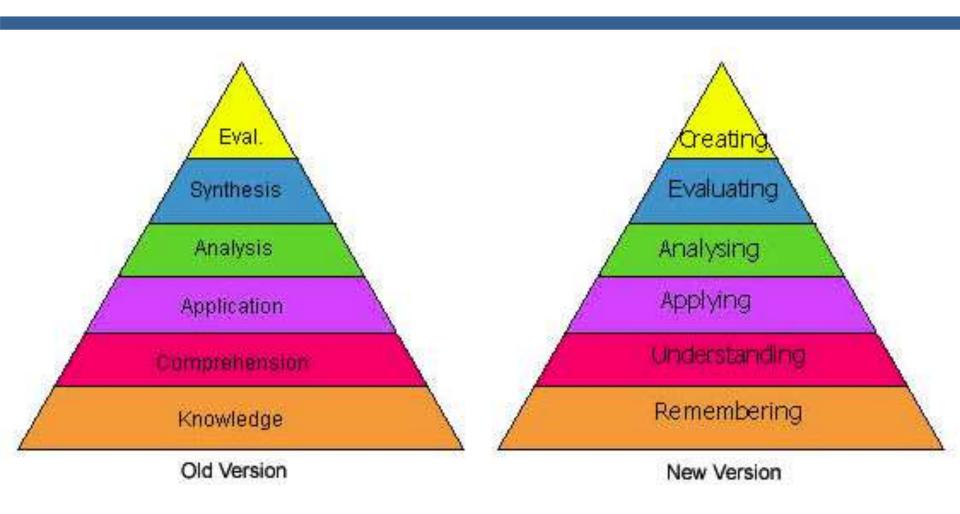
1. We knew what the task was

2. We knew how the information was organized

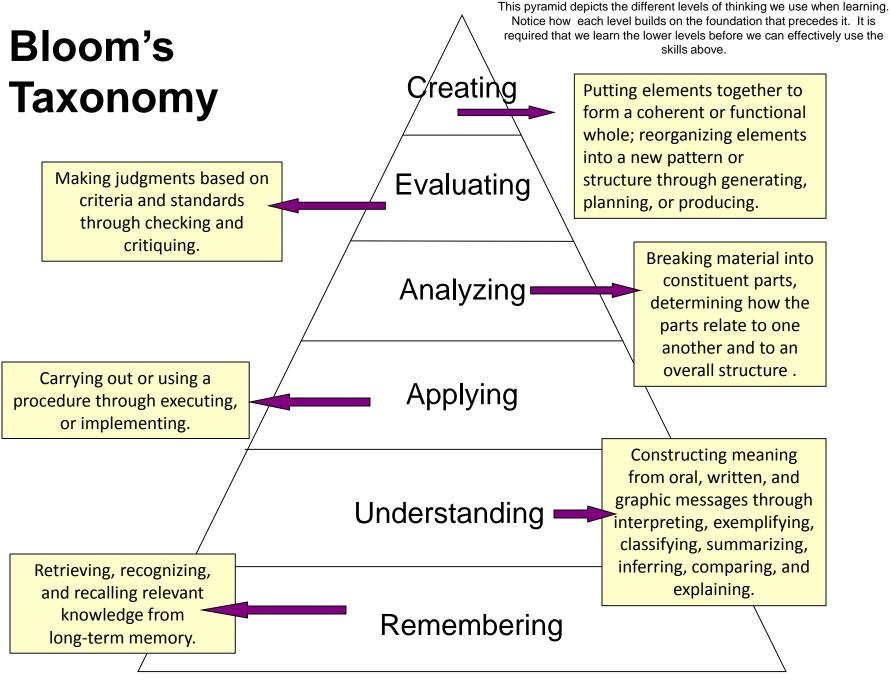
Excellent Resource

Bransford, J.D., Brown, A.L., Cocking, R.R. (Eds.), 2000. How people learn: Brain, Mind, Experience, and School. Washington, DC: National Academy Press.

What we know about learning


- Active learning is more lasting than passive learning
 - -- Passive learning is an oxymoron*
- Thinking about thinking is important
 - Metacognition**
- The level at which learning occurs is important
 - Bloom's Taxonomy***

^{*}Cross, Patricia, "Opening Windows on Learning" League for Innovation in the Community College, June 1998, p. 21.


^{**} Flavell, John, "Metacognition and cognitive monitoring: A new area of cognitive—developmental inquiry." *American Psychologist*, Vol 34(10), Oct 1979, 906-911.

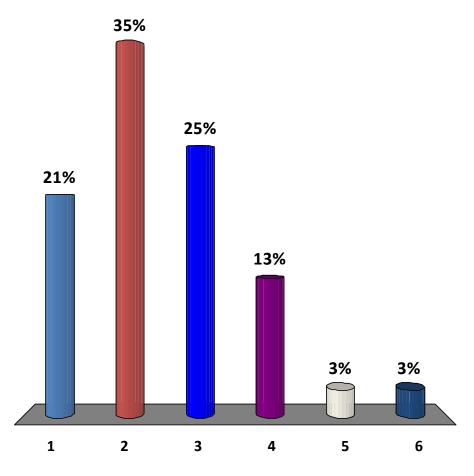
^{***} Bloom Benjamin. S. (1956). *Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain.* New York: David McKay Co Inc.

Bloom's Taxonomy

Anderson & Krathwohl, 2001

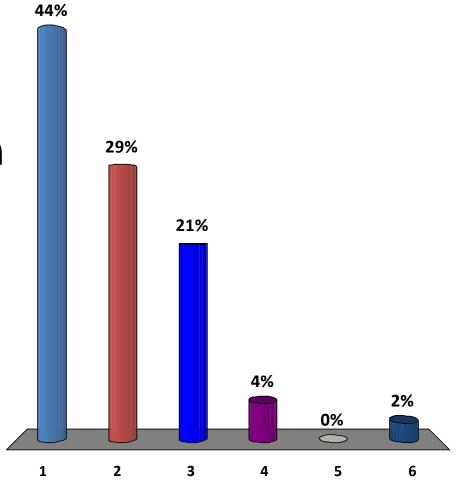
http://www.odu.edu/educ/llschult/blooms taxonomy.htm-

When we teach students about Bloom's Taxonomy...


They GET it!

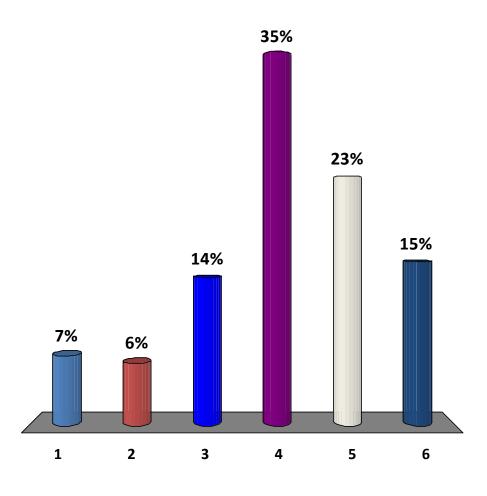
How students answered (2008)

At what level of Bloom's did you have to operate to make A's or B's in high school?


- 1. Knowledge
- 2. Comprehension
- 3. Application
- 4. Analysis
- 5. Synthesis
- 6. Evaluation

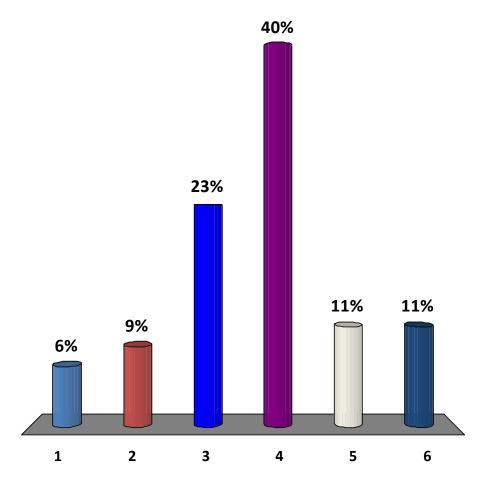
How students answered (2013)

At what level of Bloom's did you have to operate to make A's or B's in high school?


- 1. Knowledge
- 2. Comprehension
- 3. Application
- 4. Analysis
- 5. Synthesis
- 6. Evaluation

How students answered (in 2008)

At what level of Bloom's do you think you'll need to be to make an A in Chem 1201?


- 1. Knowledge
- 2. Comprehension
- 3. Application
- 4. Analysis
- 5. Synthesis
- 6. Evaluation

How students answered (in 2013)

At what level of Bloom's do you think you'll need to be to make an A in Chem 1201?

- 1. Knowledge
- 2. Comprehension
- 3. Application
- 4. Analysis
- 5. Synthesis
- 6. Evaluation

How do we teach students to move higher on Bloom's Taxonomy?

Teach them the Study Cycle*

*adapted from Frank Christ's PLRS system

The Study Cycle

Preview

<u>Preview before class</u> – Skim the chapter, note headings and boldface words, review summaries and chapter objectives, and come up with questions you'd like the lecture to answer for you.

Attend

Attend class – GO TO CLASS! Answer and ask questions and take meaningful notes.

Review

<u>Review after class</u> – As soon after class as possible, read notes, fill in gaps and note any questions.

Study

<u>Study</u> – Repetition is the key. Ask questions such as 'why', 'how', and 'what if'.

- Intense Study Sessions* 3-5 short study sessions per day
- Weekend Review Read notes and material from the week to make connections

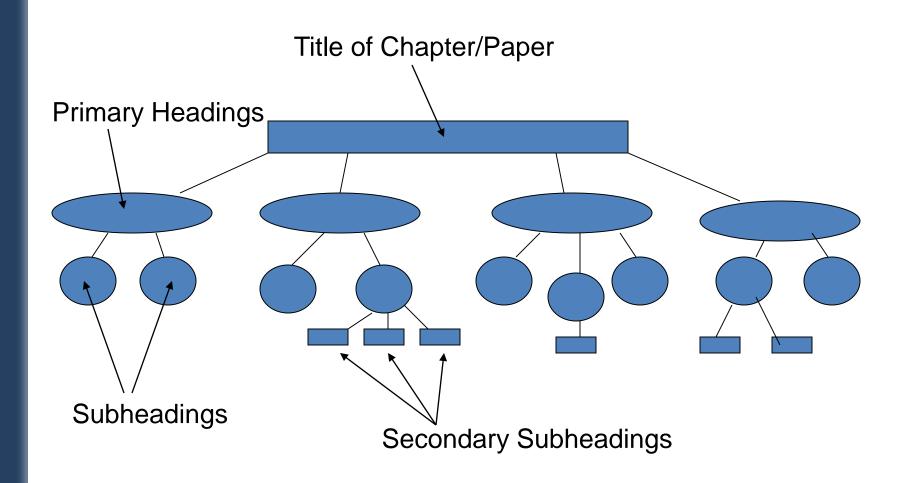
Assess

Assess your Learning – Periodically perform reality checks

- Am I using study methods that are effective?
- Do I understand the material enough to teach it to others?

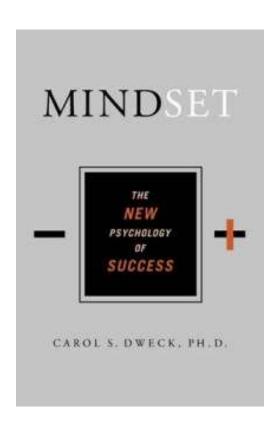
Intense Study Sessions

	1 Set a Goal	1-2 min	Decide what you want to accomplish in your study session
ı	2 Study with Focus	30-50 min	Interact with material- organize, concept map, summarize, process, re-read, fill-in notes, reflect, etc.
ı	3 Reward Yourself	10-15 min	Take a break— call a friend, play a short game, get a snack
	4 Review	5 min	Go over what you just studied

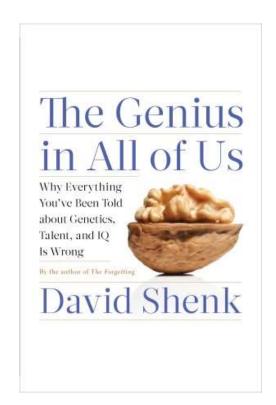


Concept maps can develop ability to think critically

And there are many different forms of concept maps


Chapter/Paper Map

Compare and Contrast


Thermodynamic Control	Kinetic Control			
How are they sin	milar?			
How are they different?				

Help Students Develop the Right Mindset

Dweck, Carol, 2006.

Mindset: The New Psychology
of Success. New York:
Random House Publishing

Shenk, David, 2010. The Genius in All of Us: Why Everything You've Been Told About Genetics, Talent, and IQ Is Wrong. New York: Doubleday

Mindset* is Important!

Fixed Intelligence Mindset

Intelligence is static
You have a certain amount of it

Growth Intelligence Mindset
 Intelligence can be developed
 You can grow it with actions

Dweck, Carol (2006) Mindset: The New Psychology of Success.

New York: Random House Publishing

Responses to *Many* Situations are Based on Mindset

	Fixed Intelligence Mindset Response	Growth Intelligence Mindset Response
Challenges	Avoid	Embrace
Obstacles	Give up easily	Persist
Tasks requiring effort	Fruitless to Try	Path to mastery
Criticism	Ignore it	Learn from it
Success of Others	Threatening	Inspirational

Email from a Spring 2011 Chem 1201 student

"...Personally, I am not so good at chemistry and unfortunately, at this point my grade for that class is reflecting exactly that. I am emailing you inquiring about a possibility of you tutoring me."

April 6, 2011

"I made a 68, 50, (50), 87, 87, and a 97 on my final. I ended up earning a 90 (A) in the course, but I started with a 60 (D). I think what I did different was make sidenotes in each chapter and as I progressed onto the next chapter I was able to refer to these notes. I would say that in chemistry everything builds from the previous topic.

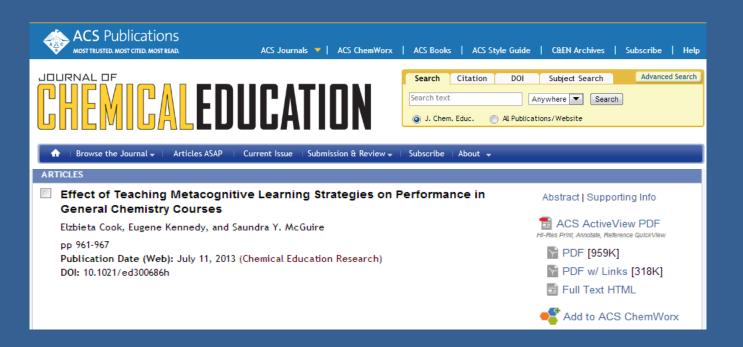
May 13, 2011

Semester GPA: 3.8

What happens when we **teach**metacognitive learning strategies,
Bloom's Taxonomy, and the Study Cycle
to an entire class, not just individuals?

Performance in Gen Chem I in 2011 Based on One Learning Strategies Session

Attended Absent


Exam 1 Avg.: 71.65% 70.45%

Exam 2 Avg.: 77.18% 68.90%

Final course Avg: 81.60% 70.43%

Final Course Grade: B C

The one 50-min presentation on study and learning strategies resulted in an improvement of one full letter grade!

Metacognition: An Effective Tool to Promote Success in College Science Learning*

Ninfeng Zhao¹, Jeffrey Wardeska¹, Saundra McGuire², Elzbieta Cook²

¹Department of Chemistry, East Tennessee State University

²Department of Chemistry, Louisiana State University

*Accepted for publication April 2013

Sharing Strategies that Have Worked for Others Can Be Very Motivational

Before and After

- Robert, freshman chemistry student
 42, 100, 100, 100
 A in course
- Michael, senior pre-med organic student
 30, 28, 80, 91
 B in course
- Miriam, freshman calculus student37.5, 83, 93B in course
- Ifeanyi, sophomore thermodynamics student
 - 67, 54, 68, <u>95</u> B in course
- Terrence, junior Bio Engineering student
 GPA 1.67 cum, 3.54 (F 03), 3.8 (S 04)

Top 5 Reasons Folks Did Not Do Well on Test 1 in General Chemistry*

- 1. Didn't spend enough time on the material
- 2. Started the homework too late
- 3. Didn't memorize the information I needed to memorize
- 4. Did not use the book
- 5. Assumed I understood information that I had read and re-read, but had not applied

^{*}McGuire's Survey of General Chemistry Students

Top 5 Reasons Students Made an A on Test 1:

- 1. Did preview-review for every class
- 2. Did a little of the homework at a time
- 3. Used the book and did the suggested problems
- 4. Made flashcards of the information to be memorized
- 5. Practiced explaining the information to others

Email from ENG Professor at New Mexico State Univ. Received on 10/22/2013

At the end of a 60 minute learning strategies presentation by the professor, students were given a survey to determine their self-assessment of whether they were using or not using the strategies. The average scores of the different groups on the first two exams are shown below.

Reported Use of Strategies	Exam 1	Exam 2
Did not use the strategies	58	54
Used metacognitive strategies	95	80

Cognitive Skills Needed for Research*

- Deep and broad knowledge base
- Ability to read, comprehend, and evaluate research literature
- Ability to critically evaluate experiments and results
- Creativity and Imagination
- Ability to interpret and question data
- Ability to pose questions and propose studies to answer the questions

Top 5 Reasons Students Flounder in Research Environments*

- 1. Don't spend enough time understanding the basic science
- 2. Don't critically read research papers
- 3. Are operating at lower levels of Bloom's
- 4. Don't accurately predict the amount of time needed for experiments
- 5. Have a fixed intelligence mentality and avoid challenges, expend minimal effort, and give up when things get difficult

Top 5 Reasons Students Excel in Research Environments

- 1. Review and master the basics
- 2. Understand how their project fits into the larger research picture in their field
- 3. Operate at the higher levels of Bloom's
- 4. Understand the "culture" of the group and of the greater research community
- 5. Have a growth intelligence mindset and embrace challenges, expend effort, and persist through difficulties

LSU Analytical Chemistry Graduate Student's Cumulative Exam Record

200	<u>04 – 2005</u>	<u> 2005 – 2006</u>		<u> 2006</u>
9/04	Failed		10/05	Passed
10/04	Failed	Began work with CAS and the Writing Center in	11/05	Failed
11/04	Failed		12/05	Passed best in group
12/04	Failed		1/06	Passed
1/05	Passed	October 2005	2/06	Passed
2/05	Failed		3/06	Failed
3/05	Failed		4/06	Passed last one!
4/05	Failed		5/06	N/A

Dr. Algernon Kelley, December 2009

From a Xavier University student to Dr. Kelley in Fall 2011

Oct. 17, 2011

Hello Dr. Kelley. ... I am struggling at Xavier and I REALLY want to succeed, but everything I've tried seems to end with a "decent" grade. I'm not the type of person that settles for decent. What you preached during the time you were in Dr. Privett's class last week is still ringing in my head. I really want to know how you were able to do really well even despite your circumstances growing up. I was hoping you could mentor me and guide me down the path that will help me realize my true potential while here at Xavier. Honestly I want to do what you did, but I seriously can't find a way how to. Can I please set up a meeting with you as soon as you're available so I can learn how to get a handle grades and classes?

Oct. 24, 2011

Hey Dr. Kelley, I made an 84 on my chemistry exam (compared to the 56 on my first one) using your method for 2 days (without prior intense studying). Thanks for pointing me in the right direction. I'll come by your office Friday and talk to you about the test.

Nov 3, 2011

Hey Dr. Kelley! I have increased my Bio exam grade from a 76% to a 91.5% using your system. Ever since I started your study cycle program, my grades have significantly improved. I have honestly gained a sense of hope and confidence here at Xavier. My family and I are really grateful that you have taken time to get me back on track.


Teaching and Learning Strategies That Work

SCIENCE, VOL 325
4 SEPTEMBER 2009
www.sciencemag.org

ROALD HOFFMANN^{1*}

AND

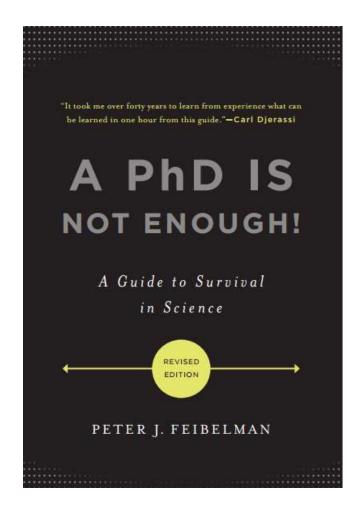
SAUNDRA Y. MCGUIRE²

¹Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853, USA.

²Center for Academic Success and Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.

Scientist

September-October 2010 Volume 98, Number 5



MARGINALIA

Learning and Teaching Strategies

Roald Hoffmann and Saundra Y. McGuire

Excellent Resource for Students

Feibelman, Peter J, 2011. A PhD Is Not Enough! New York: Basic Books

We can significantly increase students' preparation for research!

- We must teach students the learning process and provide specific strategies
- We must not judge student potential on initial performance
- We must encourage students to persist in the face of initial failure
- We must encourage the use of metacognitive tools

Special Note

Please visit the CAS website at www.cas.lsu.edu.

We have on-line workshops that will introduce you and your students to effective metacognitive strategies. Please feel free to contact me at smcgui1@lsu.edu.

Have fun teaching your students powerful metacognitive strategies!

Saundra McGuire

Useful Websites

- www.cas.lsu.edu
- www.howtostudy.org
- www.vark-learn.com
- www.drearlbloch.com
- Searches on www.google.com

Additional References

- Bransford, J.D., Brown, A.L., Cocking, R.R. (Eds.), 2000. How people learn: Brain, Mind, Experience, and School. Washington, DC: National Academy Press.
- Christ, F. L., 1997. Seven Steps to Better Management of Your Study Time. Clearwater, FL: H & H Publishing
- Cromley, Jennifer, 2000. Learning to Think, Learning to Learn: What the Science of Thinking and Learning Has to Offer Adult Education. Washington, DC: National Institute for Literacy.
- Ellis, David, 2006. Becoming a Master Student*. New York: Houghton-Mifflin.
- Hoffman, Roald and Saundra Y. McGuire. (2010). Learning and Teaching Strategies. *American Scientist*, vol. 98, pp. 378-382.
- Nilson, Linda, 2004. Teaching at It's Best: A Research-Based Resource for College Instructors. Bolton, MA: Anker Publishing Company.