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Teruyama R, Sakuraba M, Wilson LL, Wandrey NE, Arm-
strong WE. Epithelial Na* sodium channels in magnocellular
cells of the rat supraoptic and paraventricular nuclei. Am J Physiol
Endocrinol Metab 302: E273-E285, 2012. First published Novem-
ber 1, 2011; doi:10.1152/ajpendo.00407.2011.—The epithelial Na*
channels (ENaCs) are present in kidney and contribute to Na* and
water homeostasis. All three ENaC subunits (o, B, and vy) were
demonstrated in the cardiovascular regulatory centers of the rat brain,
including the magnocellular neurons (MNCs) in the supraoptic nu-
cleus (SON) and the paraventricular nucleus (PVN). However, the
functional significance of ENaCs in vasopressin (VP) and oxytocin
(OT) synthesizing MNCs is completely unknown. In this study, we
show with immunocytochemical double-labeling that the a-ENaC is
colocalized with either VP or OT in MNCs in the SON and PVN. In
addition, parvocellular neurons in the dorsal, ventrolateral, and pos-
terior subregions of the PVN (not immunoreactive to VP or OT) are
also immunoreactive for a-ENaC. In contrast, immunoreactivity to 3-
and y-ENaC is colocalized with VP alone within the MNCs. Further-
more, immunoreactivity for a known target for ENaC expression, the
mineralcorticoid receptor (MR), is colocalized with both VP and OT
in MNCs. Using single-cell RT-PCR, we detected mRNA for all three
ENaC subunits and MR in cDNA libraries derived from single MNCs.
In whole cell voltage clamp recordings, application of the ENaC
blocker benzamil reversibly reduced a steady-state inward current and
decreased cell membrane conductance approximately twofold. Fi-
nally, benzamil caused membrane hyperpolarization in a majority of
VP and about one-half of OT neurons in both spontaneously firing and
quiet cells. These results strongly suggest the presence of functional
ENaCs that may affect the firing patterns of MNCs, which ultimately
control the secretion of VP and OT.

aldodsterone; vasopressin; oxytocin

THE NEUROHYPOPHYSIAL HORMONES vasopressin (VP) and oxyto-
cin (OT) are synthesized in the magnocellular neurons (MNCs)
located within the paraventricular nucleus (PVN) and the
supraoptic nucleus (SON) of the hypothalamus and released
from the neurohypophysis into the general circulation in re-
sponse to physiological demands. The secretion of VP in-
creases in response to hyperosmolality, hypovolemia, and hy-
potension and produces antidiuretic and pressor effects (59). In
addition to the well-known effects of OT during parturition and
lactation, plasma OT also increases with hyperosmolality and
hypernatremia (32) and induces natriuresis (13, 31).

The non-voltage-dependent, amiloride-sensitive epithelial
Na™ channels (ENaCs) are present in the apical membrane of
epithelial cells in a variety of tissues, such as urinary bladder,
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renal collecting duct, distal colon, sweat and salivary glands,
lung, and taste buds, and are known to mediate the transport of
Na™ across epithelia (7, 21). Thus, together with the Na*/K™-
ATPase present in the basal membrane of epithelial cells,
ENaCs regulate transepithelial Na* transport; however, entry
across the apical membrane through ENaCs is the rate-limiting
step under most circumstances (21). The ENaCs located in the
distal nephron in kidney are known to finely regulate blood
pressure and extracellular fluid volume by modulating Na*
excretion and reabsorption (7, 21). Activity of ENaCs is
regulated largely by the adrenal mineralocorticoid aldosterone
through its mineralocorticoid receptor (MR) (42).

Interestingly, both mRNA and protein for all three ENaC
subunits (o, B, and y) and MR were demonstrated in regions
implicated in cardiovascular control, such as the MNCs in the
SON and PVN, and also in the hippocampus, choroid plexus,
ependyma, and brain blood vessels in rats (4). The physiolog-
ical function of the ENaC in neurons is not well understood;
however, the locations of ENaC in the brain suggest a role in
cardiovascular regulation. Intracerebroventricular (icv) infu-
sion of aldosterone increases blood pressure, presumably via
upregulation of ENaC in the brain in Wistar rats (68, 69) and
in an animal model of salt-sensitive hypertension, Dahl salt-
sensitive (Dahl-S) rats (25). Importantly, icv injections of the
ENaC blocker, the amiloride analog benzamil, significantly
attenuated hypertension in these animals (27, 47). These find-
ings suggest that aldosterone-mediated activation of ENaCs in
brain could contribute to the development of hypertension and
that central ENaC inhibition may be a potential new target in
the treatment of cardiovascular disease (63). However, the
significance of ENaCs in regulating MNC electrical activity is
unknown. In the present study, we confirmed the presence of
ENaCs and MR in MNCs and determined the extent of their
selective expression in VP and OT neurons, and for the first
time we show that ENaCs contribute to the membrane potential
in these neurons.

MATERIALS AND METHODS
Animals

Male Sprague-Dawley rats were used (180-210 g body wt; Harlan
Laboratories, Indianapolis, IN). The rats were housed in a room on a
12:12-h light-dark cycle, with access to food and water available ad
libitum. All protocols were approved by the Institutional Animal Care
and Use Committees at the University of Tennessee and Louisiana
State University.

Electrophysiology

Slice preparation. The rats were deeply anesthetized with pento-
barbital sodium (50 mg/kg ip) and perfused through the heart with
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Fig. 1. Immunocytochemical identification of cell types in
the recorded magnocellular neuron (MNC). The patched
neurons were filled with biocytin and visualized by 7-
amino-4-methylcoumarin-3-acetic acid (AMCA)-conju-
gated avidin (left arrow). The tissue was also labeled for
vasopressin (VP)- and oxytocin (OT)-neurophysins (NP) by
immunofluorescence using DyLight 488- and DyLight 594-
conjugated secondary antibodies, respectively. The recorded
cell (left arrow) was immunoreactive (ir) to VP-NP (middle
arrow) but not to OT-NP (right arrow).

cold artificial cerebrospinal fluid (ACSF; see below), in which NaCl
was replaced by an equiosmolar amount of sucrose. Brains were
removed, and coronal slices (250 wm) containing SON were obtained
by a vibrating blade microtome (Leica VT1000S; Leica, Mannheim,
Germany).

Recording. Whole cell patch clamp recordings were acquired
digitally at 20 kHz and filtered at 5 kHz with a Digidata 1440A and
an Axopatch 700A or 700B (Molecular Devices, Foster City, CA)
amplifier in conjunction with PClamp 10 software (Molecular De-
vices) on a Windows platform PC. The MNCs in the SON were
identified visually using an Olympus BX50WI microscope and a X40
water immersion lens (0.8 na) under IR illumination (780 = 30 nm)
using a charge-coupled device camera. Recordings were taken using
borosilicate electrodes (4—8 M) resistance) produced with a hori-
zontal electrode puller (Model P-87 Flaming/Brown Micropipette
puller; Sutter Instruments, Novato, CA). The patch solution for
voltage clamp experiment contained (in mM) 100 p-gluconic acid,
100 CsOH, 20 CsCl, 10 HEPES, 11 EGTA, 1 CaCl2, 2 MgCl12, 10
NaCl, 2 adenosine 5'-triphosphate (ATP), and 0.4 guanosine 5'-
triphosphate (GTP) and for current clamp experiment contained (in
mM) 140 K-gluconate, 1 MgCl,, 10 HEPES, 1 CaCl,, 2 ATP
Mg™ ™), 0.4 GTP (Na™), and 1 EGTA. The patch solutions also
contained 0.2% biocytin (Sigma) to fill the patched cell (64, 65). The
ACSF consisted of (in mM) 125 NaCl, 2.5 KCIl, 1 MgSO., 1.25
NaH,PO., 26 NaHCOs, 20 p-glucose, 2 CaCl,, and 0.4 ascorbic acid.
The medium was saturated with 95% 0,-5% CO», with a pH of
7.3-7.4 and an osmolality of 290-300 mOsm/kg H-O. Picrotoxin and
DNQX (100 and 10 M, respectively) were also added to ACSF to
suppress the synaptic activity. Solutions were warmed to 33-34°C
during the recordings.

Post Hoc Immunocytochemical Identification of Cell Types

The slices were fixed (4% paraformaldehyde-0.1% picric acid in
0.15 M sodium phosphate buffer, pH 7.2-7.4) and processed for
double-immunofluorescence labeling to identify the cell type (64, 65).
To identify VP neurons, a specific VP-neurophysin (NP) polyclonal
antibody (53) raised in rabbits was used at a 1:20,000 dilution
[provided by Alan Robinson, University of California Los Angeles
(UCLA)]. For OT neurons, a specific anti-OT-NP monoclonal anti-
body (6) raised in mouse is used at a 1:500 dilution (PS38; provided
by Harold Gainer, National Institutes of Health). Slices were incu-
bated for 48—72 h at 4°C, followed by the incubation in a cocktail of
secondary antibodies and avidin-AMCA (7-amino-4-methylcouma-
rin-3-acetic acid; Vector Laboratories, Burlingame, CA), overnight at
4°C. The secondary antibodies were Alexa Fluor 488-conjugated goat
anti-rabbit and Alexa Fluor 568-conjugated goat anti-mouse IgG
(Invitrogen, Eugene, OR). Avidin-AMCA was used to visualize bio-
cytin-filled neurons. Neurons were considered as either OT or VP
types only if positive staining of one antibody was complemented by
a negative reaction for the other one (Fig. 1).

Double Immunolabeling

The antibodies against a-, -, and y-ENaC subunits (3560-2,
3755-2, and 550, respectively) were raised in rabbit and were a kind
gift from Dr. Mark A. Knepper (National Institutes of Health,

ENaC IN THE SON AND PVN

Bethesda, MD). The production and characterization of these ENaC
subunit antibodies were described previously in great detail (42). The
anti-VP-NP (PS41) and the anti-OT-NP (PS38) were raised in mouse
against VP-NP or OT-NP, respectively (6), and used at a 1:500
dilution (see above). The slices were first incubated with one of the
anti-ENaC subunits for 48—72 h at 4°C, followed by the incubation
with either anti-VP-NP or anti-OT-NP for 48—72 h at 4°C.

The monoclonal anti-mineralocorticoid receptor antibody (MRN3
3F10) developed by C. E. Gomez-Sanchez was obtained from the
Developmental Studies Hybridoma Bank developed under the aus-
pices of the National Institute of Child Health and Human Develop-
ment and maintained by The University of Iowa, Department of
Biology, Iowa City, IA. The production and characterization of the
MR antibody were described previously in great detail (24). The
anti-VP-NP (Rob-VP) and the anti-OT-NP (Rob-OT) antiserum used
for double labeling with MR antibody were provided by Alan Rob-
inson (UCLA). Rob-VP and -OT antisera (53) were raised in rabbit
against VP-NP or OT-NP, respectively, and used at 1:20,000 and
1:10,000 dilutions, respectively.

After incubations with primary antibodies, the slices were incu-
bated in a cocktail of appropriate secondary antibodies for 2 h at room
temperature. The secondary antibodies used were DyLight 488-con-
jugated goat anti-rabbit and DyLight 594-conjugated goat anti-mouse
IgG (Jackson ImmunoResearch, West Grove, PA). The brain slices
were examined, and confocal images (1,024 X 1,024) were acquired
with a confocal microscope (Leica TCS SP2 spectral confocal micro-
scope). The optical section thickness was 1 wm. These were viewed in
stacks of three to five sections using Imagel software (NIH).

Table 1. Primer sequences used to detect gene expressions
of interest

Amplicon
Gene Primer Sequence Size, bp
a-ENaC
Forward 5"-GTTCTGTGACTACCGAAAGCAGAG- 3’ 429
Reverse 5'-CGTAGCAGCATGAGAAGTGTGATG- 3
B-ENaC
Forward 5'-ACCCTGAGCAGGAAGGGTAT -3 220
Reverse 5"-ACAGGAGGCCACTAGCTTGA-3
v-ENaC
Forward 5"-CGTCAGTGGCACAAAGCCAA-3' 301
Reverse 5"-GAGAGCCTCCTCAAACCATG- 3"
MR
Forward 5'-GCTCAACATTGTCCAGTACA-3' 260
Reverse 5"-GCACAGGTGGTCCTAAGATT -3’
oT
Forward 5"-GACGGTGGATCTCGGACTGAA -3’ 463
Reverse 5"-CGCCCCTAAAGGTATCATCACAAA-3’
VP
Forward 5'-CCTCACCTCTGCCTGCTACTT -3’ 440
Reverse 5"-GGGGGCGATGGCTCAGTAGAC-3’

ENaC, epithelial Na™ channel; MR, mineralocorticoid receptor; OT, oxy-
tocin; VP, vasopressin.
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Single-Cell RT-PCR

Single-cell harvest for single-cell RT-PCR. The brains were sliced
as described in Slice preparation. Small pieces of brain (~2 X 2 mm)
containing the SON were dissected from the slices under a stereomi-
croscope. These pieces were incubated in oxygenated ACSF (35°C)
containing protease type XIV (1.2 mg/ml; Sigma Chemical, St. Louis,
MO) for 20-30 min and then washed with sodium isethionate solution
(in mM: 140 sodium isethionate, 2 KCI, 4 MgCl,, 23 glucose, 15
HEPES, pH 7.3). The enzyme-treated tissues were triturated in so-
dium isethionate solution using three successively smaller fire-pol-
ished pipettes to release individual MNC cell bodies. The supernatant
containing dissociated neurons from each trituration step was trans-
ferred to a plastic Petri dish (Nunc, Rochester, NY) on an inverted
microscope stage, and cells were allowed to settle for ~5 min. A
background flow of ~1 ml/min of HEPES-buffered saline solution
(HBSS) was then established. HBSS consisted of (in mM) 138 NaCl,
3 KCl, 1 MgCl,, 2 CaCl,, 10 HEPES, and 20 dextrose, pH 7.3
(adjusted with 1 N NaOH), and osmolarity = 300-305 mOsmol/l.

Electrode glass (Corning 7052 capillary glass; Garner Glass, Cla-
remont, CA) was autoclaved to prevent RNAse contamination. Elec-
trodes were pulled on a Sutter Instrument (Novato, CA) Model P-87
Flaming/Brown Micropipette puller, fire-polished, and filled with
HBSS made with RNAse-free water. Positive pressure was applied to
the pipette while navigating to the cell to minimize contamination.
The electrode with an attached cell was lifted into a stream of ACSF
and washed for 5 min before the cell was sucked into the pipette.
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Following aspiration, the contents of the electrode were ejected into a
chilled, 0.5-pl, presiliconized RT tube containing a cellular mixture
[1.9 wl of diethylpyrocarbonate (DEPC)-treated water, 1.0 .l of ANTP
(10 mM), 0.7 w1 of BSA (143 ng/pl), 0.7 wl of oligo(dT) (0.5 ug/wl),
and 0.7 pl of SUPERase-in (40 U/wl)]. The mixture was stored at
—80°C or used immediately for RT.

RT. The mixture was heated to 65°C and then placed on ice for =1
min. Single-stranded cDNA was synthesized from the cellular mRNA
after 16 pl of RT Master Mix [6.0 pl of DEPC-treated water, 2.0 ul
of 10X RT buffer, 4.0 nl of MgCl, (25 mM), 2.0 pl of DTT (0.1 M),
1.0 pl of RNAse Out, and 1.0 wl of Superscript III] was added. This
mixture was incubated at 42°C for 50 min and then terminated by
heating to 70°C for 15 min. The reactions were collected by a brief
centrifugation and then incubated in 0.5 pl of RNAse H (2 U/pl) for
20 min to remove any remaining RNA from the reaction. The cDNA
can be stored at —80°C or used immediately for PCR.

PCR. The single-cell cDNA generated from the RT step was
subjected to conventional PCR using a programmable thermal
cycler from MJ Research (Waltham, MA) and primers designed
specifically to amplify the cDNA of interest (Table 1). Identifica-
tion of each cDNA was based on the predicted size of each PCR
product. These primers listed in Table 1 have been used success-
fully (4, 23). Negative controls for contamination from extraneous
and genomic DNA from other sources were run for every batch of
neurons. To ensure that there was no contamination from genomic
DNA, reverse transcriptase was omitted. Replacing the cellular

Fig. 2. Colocalization of a-epithelial Na™ channel (ENaC) subunit with both VP-NP and OT-NP immunoreactivity in coronal section of the rat supraoptic nucleus
(SON). A and D: a-ENaC subunit immunoreactivity labeled with DyLight 488-conjugated secondary antibody. Note that the intense immunoreactivity to a-ENaC
subunit appeared to be confined in somata of the MNCs within the SON. B: VP-NP immunoreactivity labeled with DyLight 594-conjugated secondary antibody
in same section and image plane as in A. E: OT-NP immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image plane
asin D. C and F: the merged images revealed that a-ENaC immunoreactivity is colocalized with both VP and OT immunoreactivities within MNCs in the SON.
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template with water controlled for contamination from extraneous
sources.

RESULTS

Immunocytochemical Localization of ENaC Subunits in the
SON and the PVN

The ENaC subunit antibodies gave consistent results in 22
animals at dilutions of 1:1,000 for a-subunits, 1:250 for (3-sub-
units, and 1:2,000 for y-subunits, as shown in Figs. 2-7. The
most prominent immunoreactivity was observed in the SON
and the PVN within coronal sections containing these nuclei.
In addition, immunoreactivity was found in cuboidal epithe-
lium of the choroid plexus and in the ventricular ependyma.
Overall, the localization of a-, B-, and y-ENaC subunits within
the rat hypothalamus was similar to previous reports (3, 4).
Here, we report a more detailed localization of a-, 3-, and
v-ENaC within the SON and PVN performed by confocal
double immunocytochemistry, using specific antibodies
against ENaC subunits and antibodies against VP- or OT-NP.

ENaC IN THE SON AND PVN

An intense immunoreactivity to o-ENaC subunit was confined
largely to somata of both OT and VP neurons within the SON
(Fig. 2). Prominent a-ENaC immunoreactivity was also observed
in somata and proximal parts of dendrites of magnocellular cells
within the PVN (Fig. 3). Whereas most of these a-ENaC-
immunoreactive MNCs were located in a cluster of cells in the
posterior magnocellular region, o-ENaC-immunoreactive magno-
cellular cells were found scattered among parvocellular cells in
other regions of the PVN (dorsal, medial, ventrolateral, and
posterior parvocellular regions). The lateral cluster of the cells was
composed mostly of VP neurons (Fig. 3, A and D); however,
some OT neurons scattered around these VP neurons were im-
munoreactive to a-ENaC. Therefore, the a-ENaC immunoreac-
tivity appears to be colocalized with either VP or OT MNCs. In
addition to the MNCs, some parvocellular neurons that were not
immunoreactive to VP- or OT-NP within dorsal, ventrolateral,
and posterior parvocellular regions were also immunoreactive to
a-ENaC subunit. Only sporadic a-ENaC-immunoreactive parvo-
cellular and MNCs were observed within the medial parvocellular
region of the PVN.

Fig. 3. Colocalization of a-ENaC subunit and VP-NP immunoreactivity in coronal section of the rat paraventricular nucleus (PVN). A and D: a-ENaC subunit
immunoreactivity labeled with DyLight 488-conjugated secondary antibody. Prominent o-ENaC immunoreactivity is observed in somata and proximal parts of
dendrites of MNCs within the PVN. Most of these a-ENaC-immunoreactive magnocellular cells are located in a cluster of cells in the posterior magnocellular
(pm) region. The parvocellular cells in dorsal (dp), ventrolateral (vlp), and posterior parvocellular regions are also immunoreactive to a-ENaC subunit. B: VP-NP
immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image plane as in A. Note that the VP-NP immunoreactive cells
form a cluster in the lateral portion of the PVN. E: OT-NP immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image
plane as in D. C and F: the merged images revealed that a-ENaC immunoreactivity is colocalized with both VP and OT immunoreactivities within MNCs in
the PVN. Note that the lateral cluster of the cells is composed mostly of VP. MNCs are immunoreactive to a-ENaC as well as those sparsely located OT MNCs
around these VP neurons. However, the parvocellular cells immunoreactive to a-ENaC within dp, vlp, and posterior parvocellular regions are not immunoreactive

to VP or OT.
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Immunoreactivity of 3-ENaC in the SON was also confined
within the somata of MNCs (Fig. 4). Although the entire area
of the SON has diffuse staining that stands out from the rest of
the brain area, indicating that almost all MNCs have some
degree of immunoreactivity, not all of the MNCs exhibited
intense somatic immunoreactivity. Double immunocytochem-
istry either with VP- or OT-NP revealed that these 3-ENaC-
immunoreactive cells were all VP and not OT neurons (Fig. 4,
C and F). Not many MNCs possessed intense 3-ENaC immu-
noreactivity in the PVN (Fig. 5); however, unlike in the SON,
the immunoreactivity in these cells was not confined within the
soma. Prominent immunoreactivity is seen in the dendritic
processes of these neurons, located mostly in the lateral portion
of the PVN. Again, double immunocytochemistry exposed that
B-ENaC-immunoreactive neurons were immunoreactive to
VP-NP and not OT-NP (Fig. 5, arrows). Moreover, there was
no apparent B-ENaC immunoreactivity in the parvocellular
cells in the PVN.

Immunoreactivity to y-ENaC was present in many MNCs in
the SON, with intense staining observed in a minority of
MNCs and their sparsely distributed thick dendritic processes.
(Fig. 6, arrows). Intense y-ENaC immunoreactivity was also
found in thick processes (probable dendrites) and somata of a
cluster of MNCs within the posterior magnocellular portion of
the PVN (Fig. 7). A more striking and consistent pattern of
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colocalization was present in the somata and dendrites of the
MNCs within the SON (Fig. 6, C and F) and PVN (Fig. 7,
C and F) after reaction with VP-NP antibody. Some y-ENaC-
immunoreactive MNCs were also immunoreactive to OT in the
SON and the PVN, but only barely detectable levels of OT
immunoreactivity were observed in all cases. Only weak
v-ENaC immunoreactivity was indicated in the parvocellular
cells in the PVN.

An intense immunoreactivity to MR was confined largely to
somata of a majority of MNCs in the SON (Fig. 8, A and D).
Moreover, the MR immunoreactivity appears to be colocalized
with either VP or OT MINCs in the SON (Fig. 8, C and F). In the
PVN, most of prominent MR immunoreactivity was located in a
cluster of MNCs in the posterior magnocellular region (Fig. 9,
A and D). MR immunoreactivity was also colocalized with either
VP or OT in MNCs in the PVN. In addition to the MNCs, some
parvocellular neurons that were not immunoreactive to VP- or
OT-NP within dorsal, ventrolateral, and posterior parvocellular
regions were also immunoreactive to MR.

Single-Cell RT-PCR Detection of ENaC Subunits in the MNCs

Libraries of cDNA were derived from 12 cells dissociated
from SON tissue. Cells 1—11 had mRNA for OT-NP and/or
VP-NP (Fig. 10). Unlike immunocytochemical identification

Fig. 4. Colocalization of B-ENaC subunit with both VP-NP and OT-NP immunoreactivity in coronal section of the rat SON. A and D: B-ENaC subunit
immunoreactivity labeled with DyLight 488-conjugated secondary antibody. Note that immunoreactivity of 3-ENaC in the SON is confined within the somata
of MNCs. B: VP-NP immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image plane as in A. E: OT-NP
immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image plane as in D. C and F: the merged images reveal that
these 3-ENaC-immunoreactive neurons are all VP and not OT immunoreactive neurons.
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ENaC IN THE SON AND PVN

Fig. 5. Colocalization of B-ENaC subunit and VP-NP immunoreactivity in coronal section of the rat PVN. A and D: 3-ENaC subunit immunoreactivity labeled
with DyLight 488-conjugated secondary antibody. Note that intense immunoreactivity to 3-ENaC is observed in rather scarcely distributed MNCs located mostly
within the lateral portion of the PVN. However, unlike in the SON, the immunoreactivity in these cells is not confined to the soma. Prominent immunoreactivity
can be seen in the dendritic processes of these neurons. There is no prominent immunoreactivity to 3-ENaC observed in the parvocellular cells. B: VP-NP
immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image plane as in A. Note that the VP-NP immunoreactive cells
form a cluster in the lateral portion of the PVN. E: OT-NP immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image
plane as in D. C: the merged images revealed that 3-ENaC immunoreactivties appear to be colocalized only with VP within the MNCs (arrows). F: the merged
image of D and E. Note that B-ENaC immunoreactivty is not colocalized with OT (arrows).

that demonstrates that most MNCs are phenotypically distinct,
it has been well documented with single-cell RT-PCR that
there is a variable amount of OT and VP mRNA coexpression
in virtually all of the MNCs in the SON (23, 70, 71). Therefore,
without quantitative RT-PCR it is only appropriate to state here
that these dissociated cells are confirmed as MNCs producing
OT or VP. Of these MNCs, mRNA for a-ENaC was found in
cells 1, 2, 4, and 5, mRNA for B-ENaC was found in cells 1
and 3, mRNA for y-ENaC was found in cells 5, 9, 10, and 11,
and mRNA for MR was found in cells 1, 3, 5, 6, 10, and 11. In
addition, cell 12, although it did not contain VP or OT mRNA,
contained a-ENaC, y-ENaC, and MR. Although single-cell
RT-PCR was not strong enough to obtain robust expression of
each subunit in every cell, all of these mRNAs were found in
a cDNA library derived from punched SON tissues. Taste
receptor cells in tongue epithelia are known to express ENaC;
therefore, the cDNA acquired from tongue epithelial tissue
served as a positive control.

Benzamil-Sensitive Current in MNCs

To demonstrate the functional expression of ENaC, we
looked for evidence of a benzamil-sensitive current in

MNCs using whole cell voltage clamp. However, in the
initial part of the study, a clear response to application of
either amiloride or benzamil was observed only in a minor-
ity of MNCs (~7% of the recorded cell population). The
majority of MNCs displayed only small changes or no
change at all. This percentage was inconsistent with the
number of MNCs that were immunoreactive to the antibod-
ies against ENaC subunits. One of the possibilities for the
lack of response may be an intracellular Na*-dependent
rundown observed in the cells expressing ENaC (21, 33,
60). A rise in intracellular Na™ concentration results in a
slow decrease in the current mediated by ENaC in these
cells. We tried to minimize the rise in intracellular Na™
concentration by addition of 1-2 wM amiloride in the
perfusion buffer during brain slice preparation and in the
incubation medium. Prior to recordings, the brain slices
were transported to the chamber of the patch clamp rig that
was perfused continuously with ACSF containing 1 pM
benzamil. The benzamil was then washed out after estab-
lishment of stable patch clamp. In this way, robust responses
to benzamil/amiloride were observed in 12 of 19 VP and 5
of 13 OT neurons.

AJP-Endocrinol Metab « doi:10.1152/ajpendo.00407.2011 - www.ajpendo.org

2102 ‘g Areniga4 uo Bio°ABojoisAyd-opuadle woly papeojumoq



http://ajpendo.physiology.org/

ENaC IN THE SON AND PVN

E279

Fig. 6. Colocalization of y-ENaC subunit and VP-NP immunoreactivity in coronal section of the rat SON. A and D: y-ENaC subunit immunoreactivity labeled
with DyLight 488-conjugated secondary antibody. Note the very intense staining observed in the minority of MNCs and their sparsely distributed thick dendritic
processes (arrows), although weaker immunoreactivity appeared in many MNCs. B: VP-NP immunoreactivity labeled with DyLight 594-conjugated secondary
antibody in same section and image plane as in A. E: OT-NP immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and
image plane as in D. C and F: the merged images reveal that these y-ENaC-immunoreactive cells and dendrites are all VP and not OT immunoreactive neurons

(arrows).

The steady-state current was measured while the cell was
held at —70 mV in voltage clamp. Brief hyperpolarizing pulses
(15 mV, 200 ms) were injected every 5 s to monitor the input
resistance of the cell. Washout of amiloride from the bath
resulted in an increase in a resting inward current and a
decreased resistance. Subsequent bath application of the ENaC
blocker benzamil (1 wM) reduced the resting inward current
and decreased conductance ~1.5-fold (Fig. 9). The effect was
reversed by wash of benzamil by ACSF. Figure 11 shows an
example of the effect of benzamil on a VP neuron, and we
observed this in six of nine VP neurons. The response was also
observed in 1 of 5 OT neurons tested.

Next, we looked for the effect of benzamil on the membrane
potential and the firing pattern using whole cell current clamp
recording with no injected current. The removal of amiloride
from the bath caused membrane depolarization, and a subse-
quent bath application of 1-2 wM benzamil caused membrane
hyperpolarization in seven of 10 VP and four of eight OT
recorded neurons. The benzamil-induced hyperpolarization
was observed in both spontaneously firing and quiet cells.
Figure 12 shows a VP neuron with a continuous firing pattern
before application of a benzamil. One micromolar benzamil
caused membrane hyperpolarization and cessation of the firing.

The effect was reversed by washout of benzamil from the bath
and was repeatable.

DISCUSSION

Amiloride and its analogs are known inhibitors of the de-
generin/epithelial sodium channel (Deg/ENaC) superfamily of
ion channels. The Deg/ENaC superfamily includes the ENaC
and the acid-sensitive ion channels (ASIC) as members.
ASICla and ASIC2a subunits were detected, and an acid- and
amiloride-sensitive current was detected in SON MNCs (48).
However, the concentration of amiloride required to inactivate
the ASICs in the MNCs in that study was high (10-100 uM),
and 1 pM amiloride had little effect on the ASIC activity.
Amiloride is also a known inhibitor of several other ion
transporters, including the Na*/H" exchanger (NHE) and the
Na*/Ca™™" exchanger (NCX) (36). However, amiloride at low
doses is reasonably specific for ENaCs compared with the
NHE and NCX (36). Nevertheless, the amiloride analog ben-
zamil can be used to further increase selectivity for ENaC
compared with the NHE or NCX. Benzamil, compared with
amiloride, is ninefold more potent toward ENaCs, with mark-
edly lower relative potency (0.08-fold) toward the NHE (14).
The concentration of benzamil (1-2 M) used in our study is
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Fig. 7. Colocalization of y-ENaC subunit with VP-NP or OT-NP immunoreactivity in coronal section of the rat PVN. A and D: y-ENaC subunit immunoreactivity
labeled with DyLight 488-conjugated secondary antibody. Note that intense immunoreactivity to y-ENaC is observed in the MNCs and their thick processes
(probable dendrites). These immunoreactive cells form a cluster in the lateral portion of the PVN. There appears to be weak immunoreactivity to y-ENaC in the
parvocellular cells. B: VP-NP immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image plane as in A. Note that
the VP-NP immunoreactive cells form a cluster in the lateral portion of the PVN. E: OT-NP immunoreactivity labeled with DyLight 594-conjugated secondary
antibody in same section and image plane as in D. C: the merged images revealed that y-ENaC immunoreactivties appear to be colocalized only with VP within
the MNC:s located mostly in the lateral portion of the PVN. F: the merged image of D and E. Note that y-ENaC immunoreactivties do not appear to be colocalized

with OT.

well below the ICsy of benzamil for these ion exchangers.
Therefore, when combined with the immunocytochemical and
single-cell RT-PCR data, the electrophysiological results from
this study strongly suggest the presence of functional ENaCs in
the MNCs.

The release of OT and VP from the neurohypophysis de-
pends largely on the pattern of electrical activity of their
synthesizing neurons (12, 49). During the release of VP in
response to hypovolemia (29), hypotension (34), and hyperos-
molality (8), VP neurons increase their firing rate and adapt a
phasic firing pattern comprising alternating periods of activity
(7-15 Hz) and silence, each lasting tens of seconds. Plasma OT
also increases in response to hypernatremia (32), and OT
neurons respond to hyperosmolarity with increases in firing
rate (52, 67). In the present study, the benzamil-sensitive
current was identified as an inward leak current, suggesting its
potential for modulating membrane potential. The activation of
the benzamil-sensitive current, presumably mediated by ENaCs,
would depolarize the membrane potential and allow MNCs to
initiate bursting activity. Computational studies in the supraop-
tic MNCs showed that a Na™ leak current is critical to the
depolarizations underlying phasic firing (54). Therefore, by

changes in membrane potential, the modulation of ENaCs may
significantly contribute to the regulation of firing activities of
these neurons and ultimately affect the release of VP and OT.

An intriguing finding in this study is that 3- and y-ENaC
subunits were preferentially located in VP neurons, whereas
the a-ENaC subunit was located in both VP and OT MNCs. It
is generally agreed that each of the three ENaC subunits
contributes to the formation of the functional channel complex
(11, 19), although the actual subunit composition of the chan-
nel remains uncertain and controversial. Interestingly, a-sub-
units alone or with either the 3- or y-subunit can induce low
but measurable amiloride-sensitive currents (11, 20). More-
over, alteration of subunit composition is suggested as a cause
of the variability in single-channel properties of amiloride-
sensitive ENaCs in native tissues (20). Thus, this differential
subunit expression suggests that subunit composition differs
between VP and OT neurons and may be physiologically
important. This may be the molecular mechanism accounting
for our finding that more VP (~70%) than OT neurons
(~40%) were responsive to benzamil.

It is well documented that the a-subunit is regulated inde-
pendently of B- and ~vy-subunits. Binding of aldosterone to the
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Fig. 8. Colocalization of MR with both VP-NP and OT-NP immunoreactivity in coronal section of the rat SON. A and D: MR immunoreactivity labeled with
DyLight 488-conjugated secondary antibody. Note that the intense immunoreactivity to MR appeared to be confined in somata of the MNCs within the SON.
B: VP-NP immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image plane as in A. E: OT-NP immunoreactivity
labeled with DyLight 594-conjugated secondary antibody in same section and image plane as in D. C and F: the merged images revealed that MR is colocalized
with both VP-NP and OT-NP immunoreactivities within MNCs in the SON (yellow).

MR was shown to predominantly increase the expression of
a-subunits in rat kidney (18, 41, 42, 51, 62). Interestingly, the
aldosterone regulation of ENaC subunits is somewhat tissue
specific. For example, 3- and y-ENaC mRNA are selectively
induced by mineralocorticoids in colon (5, 18, 51), whereas
mRNA for all three subunits is primarily regulated by gluco-
corticoids in lung tissue (51). The presence of MR in the brain,
including the SON and the PVN, was reported previously (2, 4,
28, 55). Nevertheless, the finding of MR in VP and OT MNCs
in present study suggests that the expression of ENaC in the
MNC is also promoted by aldosterone. Intracerebroventricular
infusion of aldosterone causes hypertension Dahl-S rats, but
icv infusion of a mineralocorticoid receptor antagonist prevents
the salt-sensitive hypertension (25). Importantly, icv infusion
of amiloride or benzamil prevents salt-induced hypertension in
Dahl-S rats (26, 69). Obviously, these findings do not provide
information about the upregulation of specific ENaC subunits
by aldosterone in the MNCs but suggest an aldosterone-
mediated activation of ENaC in these neurons.

In addition to aldosterone, VP is also known mainly to
induce the expression of 3- and y-ENaC subunits in the kidney
(16, 17, 46, 57). Of the three VP receptor subtypes (Via, Vib,
and V,) characterized, VP appears to act through the V,
vasopressin receptor to induce (3- and y-subunit gene expres-
sion (46). VP also stimulates translocation of preexisting in-
tracellular pools of ENaC subunits to the apical membrane of
the principal cells in the collecting duct, promoting Na™
reabsorption in kidney (58). VP neurons not only secrete VP at
the nerve terminals in the neurohypophysis but also release VP
in the extracellular space of the SON and PVN from their soma
and dendrites (37, 39, 45). A recent study demonstrated that the

V,-like receptor mediates the ability of somatodendritically
released VP to facilitate cell volume regulation in VP neurons
(56). In addition, somato-dendritic release of VP is known to
modulate electrical activity of VP neurons primarily via the
Via receptor (15, 40, 43, 44). Nevertheless, the presence of
V,-like receptors on VP neurons implies the possibility that the
- and vy-subunits in VP neurons could be regulated by somato-
dendritic release of VP by mechanisms similar to their regu-
lation in the nephron.

Another finding of interest in the current study is the pres-
ence of a-ENaC immunoreactivity in a subpopulation of the
parvocellular neurons in the dorsal and ventrolateral parvocel-
lular regions of the PVN. These PVN parvocellular neurons
were not immunoreactive for OT-NP or VP-NP and were
found in regions that send projections to either the rostral
ventrolateral medulla that contain sympathetic premotor neu-
rons or the spinal sympathetic preganglionic neurons to affect
the autonomic nervous system (30, 50, 61). In addition, there
was no clear immunoreactivity for 3- and y-subunits in these
parvocellular populations. This solitary expression of a-ENaC
in the parvocellular cell population suggests a different role for
ENaCs in these neurons compared with MNCs. A recent study
using c-Fos immunoreactivity to assess the role of benzamil-
sensitive proteins in the brain following chronic DOCA salt
treatment showed that icv benzamil treatment decreased c-Fos
immunoreactivity in the SON and in medial parvocellular and
posterior magnocellular neurons of the PVN but not areas
associated with regulation of sympathetic activity (1). Thus,
these authors suggested that icv benzamil attenuates DOCA
salt hypertension by modulation of neuroendocrine-related
nuclei rather than inhibition of sympathetic premotor neurons
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Fig. 9. Colocalization of MR with VP-NP or OT-NP immunoreactivity in coronal section of the rat SON. A and D: MR immunoreactivity labeled with DyLight
488-conjugated secondary antibody. Prominent MR immunoreactivity is observed in somata of MNCs within the PVN. Most of these MR-immunoreactive MNCs
are located in a cluster of cells in the posterior magnocellular region (pm). Considerable MR immunoreactivity was also observed in the parvocellular cells in
dp, vlp, and posterior parvocellular regions. B: VP-NP immunoreactivity labeled with DyLight 594-conjugated secondary antibody in same section and image
plane as in A. Note that the VP-NP immunoreactive cells form a cluster in the lateral portion of the PVN. E: OT-NP immunoreactivity labeled with DyLight
594-conjugated secondary antibody in same section and image plane as in D. C and F: the merged images revealed that MR immunoreactivity is colocalized
(yellow) with both VP-NP and OT-NP immunoreactivities within MNCs in the PVN. Note that the lateral cluster of the cells is composed mostly of VP MNCs
that are immunoreactive to MR as well as some sparsely located OT MNCs around these VP neurons. However, the parvocellular cells immunoreactive to MR
within dp, vlp, and posterior parvocellular regions are not immunoreactive to VP or OT.

in the PVN. These findings, along with the report that a-sub-
units alone can carry low but measurable amiloride-sensitive
currents (11, 20), suggest the ENaCs in these nonneuroendo-
crine parvocellular cells may have different biophysical char-
acteristics from those in the MNCs.

In taste receptor cells, ENaCs act as Na™ sensors and play an
important role in salt taste transduction (22, 35, 38). The
existence of neuronal elements that are sensitive to Na™ was
suggested, since the effects induced by icv administration of
hypertonic NaCl were shown to originate from the changes in
CSF Na* concentration but not in CSF osmolarity (9, 10).
Therefore, it is possible that ENaCs in MNCs also act as Na™
sensors, where they could underlie the specific Na™ sensitivity
attributed previously to MNCs in the SON (66).
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Fig. 11. A representative recording from a VP neuron showing the effect of
benzamil on the current measured at —70 mV. The steady-state current was
measured when the cell was held at —70 mV in voltage clamp. Brief
hyperpolarizing pulses (200 ms, —15 mV) were injected every 5 s to monitor
the input resistance of the cell. Washing amiloride from the bath resulted in an
increase in a resting inward current and a decreased resistance. Subsequent
bath application of ENaC blocker benzamil (1 wM) reduced the resting inward

current and decreased conductance ~1.5-fold. The effect was reversed by
wash of benzamil by artificial cerebrospinal fluid (ACSF).
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Fig. 12. An example of the effect of benzamil on the
membrane potential and the firing pattern of VP
neuron. The removal of benzamil from the bath

J20 mV

1 min

caused depolarization and firing of the VP cell.

Subsequent bath application of 1 pwM benzamil
caused membrane hyperpolarization and cessation

of the firing. No current was injected during the 1 pM_BenzamiI
recording.
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