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As we outlined, we meet the acceptance criteria as followed:

e Open a new research area, or a new avenue within an established area:
We show a deep and interesting connection between Boson sampling devices and cryptography.

e Solve, or make essential steps towards solving, a critical problem:

We have an information theoretic security proof (i.e., the highest standard of proof) that uses
multiphoton states in quantum communication.

e Be of unusual intrinsic interest to PRL's broad audience:
We have taken ideas from Boson Sampling, which are inherently interesting to complexity theo-
rists, and turned it into an information-theoretic proof for quantum cryptography. Therefore our
work is “exceptionally pleasing science, aesthetically”, having combined the two fields.
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For an n—photon input Fock state, output photon distribution is
proportional to the permanent of an n x n submatrix of U

m modes
n photons

b Detector

[1] S. Scheel, arXiv preprint quant-ph/0406127 (2004)

[2] S. Aaronson and A. Arkhipov, Quantum Information & Computation 14,

1383 (2014)
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Image taken from T. Gard et al., Gard, Bryan T., et al. " An introduction to boson-sampling.” From atomic to
mesoscale: The role of quantum coherence in systems of various complexities. 2015. 167-192.
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Phys. Rev. Lett. 123, 250503 - Published 18 December 2019

PhySTCS see Synopsis: Quantum Computers Approach Milestone for Boson Sampling

6/27



» Boson Sampling: photon number-path entanglement [3],
difficult to crack classically — what about by a quantum
computer?

» First information-theoretic proof that Boson Sampling is
useful for cryptography.

» Move out of the no-collision regime — efficient scaling of
Hilbert space

> “Quantum enigma machine” [4]

“Useful” — efficient QKD or can encrypt a message longer than the
key.

[3] Motes et. al., PRL 114, 170802 (2015)

[4] Guha et. al., Phys. Rev. X 4, 011016 (2014)

[6] Motes et al., Phys. Rev. Lett. 114, 170802 (2015)
[7] Huh et al., Nat. Photon. 9, 615 (2015)
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Figure: Image taken from Wikipedia

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher: LUSHQOXDMZNAIKFREPCYBWVGTJ

Quantum state: you get one measurement.
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. The code words |t)y) are chosen from the M = () possible
configurations, log () bits transmitted.

. Alice and Bob pre-share a K-bit secret key

. In advance, Alice and Bob agree upon a set of K Haar-random
m X m unitary matrices, U.

. Alice encrypts the quantum state [} by applying Uy associated
with the key, she sends this state.

. Bob decrypts using U}:.
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Net secure communication rate = log M — log K

500

log(M)
4007 ——. og(k), e =2""
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—-- log(K),e=10"10°
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n (photon number)
Asymptotic communication and secret key rates, m = n3
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» Technical results from Aaronson & Arkhipov are crucial in
calculating the key consumption, but the classical
computation complexity of Boson Sampling is not required.

> We go beyond the no-collision regime

» Use accessible information as security quantifier — quantum
data locking [8,9].

» Bounded quantum memories: Eve can store quantum
information for no longer than a limited (known) time.

[8] D. P. DiVincenzo et al., Phys. Rev. Lett. 92, 067902 (2004).
[9] S. Guha et al., Phys. Rev. X 4, 011016 (2014).
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X is a random variable with M outcomes, each occuring with
probability {px}

H(X) = Z px log2(px) (2)

G

I(A; B) = H(A) + H(B) — H(A, B)
hec(A; B) = max{I(A; B)} (3)
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Alice to Bob:

M
p= Sl (X YK) = logy M
x=1

Alice to Eve: (log K bits of information missing)

1 M K
P= SN T Uelvn) (] U = i(X;Y) =72

x=1 t=1

Classically
1(X; YK) = 1(X;Y)=1(X;K|Y) < H(K) < log, K (4)
Quantum data locking

hace(X; YK) = haec(X; V) > logy K (5)
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The goal is to upper bound L (X; E), with high probability.

hee(X:E) < 2clogM, M~ (':) (6)
Accessible information (Eve with finite-time quantum memory)
Lice (X E) = n/c/?x[H(X) + H(E) — H(X, E)] (7)
E
Bob: 1M
pa =17 D [x) (] (8)
x=1
Eve:
1 & 1& ;
paE =15 D 1X) (X1 @ 52 Y Uelib) (] UL (9)
x=1 t
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K
pae = 1D (1 S Ul (bl U (10)

J/

NV
X
PE

Eve's POVM elements

{oy10) (B}, D ayle) (¢l =1 (11)
y

10X Y) = Zay{ — {0y Ipael dy) log (6, |pae] dy)
y
M/

+ S0 loElo) og 6,168, | (12

x=1
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Theorem

Let {X:}¢=1,. 7 be T iid. d-dimensional Hermitian-matrix-valued
random variables, with E[X] = pl Then, for 6 > 0 [10]:

T 2
{72 1+6)E[X]}§dexp{—%}. (13)

The matrix Chernoff bound implies

W ZpE (1+¢€)p (14)

holds true with almost unit probability.
[10] R. Ahlswede and A. Winter, IEEE Transactions on Information Theory 48,
569 (2002).
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2. We apply a tail bound from A. Maurer to show that

(0loEl¢) = (1 = €)(¢lpele) (15)

Theorem

[11] Let {Xk}k=1,... k be K i.i.d. non-negative real-valued random
variables, with X, ~ X and finite first and second moments,
E[X],E[X?] < co. Then, for any T > 0 we have that

K 72 2
{ Z k<(1—TE[X]}§exp(—%). (16)

_EX?

= EXP — (Photon bunching modifies )

[11] Maurer, J. Inequalities in Pure and Applied Mathematics 4, 15 (2003)
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How it relates to Boson Sampling: calculate the key consumption
~, we need:

X =[(o|Ulp:)I?,
=Perm[A]*Perm[A]. (17)
Eylx] = (18)

The fourth moment of the permanent can be computed as [2]

Ey[X?] = Ey[Perm[A]*Perm[A"]?] = %
2
y = EKF] <2(n+1) (19)

[2] S. Aaronson and A. Arkhipov, Quantum Information & Computation 14,
1383 (2014)
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Then:
» Account for photon bunching

> Extend to all codewords x
» Extend to all vectors (Eve's) |¢)

Putting the above results together
I(X;Y) <2elogM (20)
Provided
log K > Iog’y—i—log%—i— O(log1/e). (21)
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€ | M'Kcmin
P = log2d — -4/ ———
fail exp < og d 4 2 )

20 eM’ ., KM'é
)—i— log M" — 1287 |

+ exp [Zd log ( (22)

€Cmin

This probability is exponentially suppressed if

2 d 20 1
K > 128y [;W log (ﬁ) + 12 log M’]

log K ~ log~y + Iog% + O(log 1/e). (23)
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Consider a train of v > 1 signal transmissions. Alice encodes
information in code words of the form

|¢x> = |1/JX1> ® |¢X2> ®... |1/’Xu> ) (24)
This in particular implies
pE” = EulUlwbx) (< U] = P2 (25)
and therefore
o = min(01716) = min(0172"16) = .  (26)
W) ._ Eull(8] Uklx)|*]

T M (O Ul P (27)

21/27



In the limit v > 1:

1 d n+m-—1
Zlog KW =~ lo log — d= 28
 log g7 + log 7. ( ) ) (28)
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Figure: Net number of bits transmitted, 20 modes and 4 photons.
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Figure: Net number of bits transmitted per optical mode in the presence
of loss. We use strictly less photons than n = m/2 as per BB84.
“Boson Sampling” cryptography - log (';’)/m bit per mode

BB84 - at most 0.5 bit per mode
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» A quantum private-key encryption protocol, first actual
application of Boson Sampling

» Information-theoretic security proof — holds for any number of
modes m and number of photons n.
Future work:
» Removing the need for the bounded storage model
» Scattershot, weak coherent states
» Error-correcting code, privacy amplification

» Time-bin encoding for long distance communication
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Photonic quantum data locking
Quantum 5, 447
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“I DON'T CARE IF YOU HAVE
A F*CKING NOBEL PRIZE,
FRIENDSHIP IS FOREVER!"

— Jonathan P. Dowling, August
2018

ZH would like to thank Professor Jonathan P. Dowling for his encouragement
and enthusiastic support throughout the years. PK would like to thank Jon
Dowling for being a great mentor.
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Thank you for your attention. Questions?

Research presented in this talk is funded in part by EPSRC
Quantum Communications Hub, Grant No. EP/M013472/1.
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