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A bit of cheek from Jon...
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Boson Sampling
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For an n−photon input Fock state, output photon distribution is
proportional to the permanent of an n × n submatrix of U

[1] S. Scheel, arXiv preprint quant-ph/0406127 (2004)
[2] S. Aaronson and A. Arkhipov, Quantum Information & Computation 14,
1383 (2014)
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Boson Sampling

Ua†i U
† =

m∑
j=1

Ui ,ja
†
j (1)

Image taken from T. Gard et al., Gard, Bryan T., et al. ”An introduction to boson-sampling.” From atomic to
mesoscale: The role of quantum coherence in systems of various complexities. 2015. 167-192.
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Boson Sampling
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Cryptography using Boson Sampling
I Boson Sampling: photon number-path entanglement [3],

difficult to crack classically – what about by a quantum
computer?

I First information-theoretic proof that Boson Sampling is
useful for cryptography.

I Move out of the no-collision regime – efficient scaling of
Hilbert space

I “Quantum enigma machine” [4]

“Useful” – efficient QKD or can encrypt a message longer than the
key.

[3] Motes et. al., PRL 114, 170802 (2015)
[4] Guha et. al., Phys. Rev. X 4, 011016 (2014)
[6] Motes et al., Phys. Rev. Lett. 114, 170802 (2015)
[7] Huh et al., Nat. Photon. 9, 615 (2015)
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The enigma machine

Figure: Image taken from Wikipedia

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher: LUSHQOXDMZNAIKFREPCYBWVGTJ

Quantum state: you get one measurement.
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Boson Sampling inspired cryptography
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1. The code words |ψx〉 are chosen from the M =
(
m
n

)
possible

configurations, log
(
m
n

)
bits transmitted.

2. Alice and Bob pre-share a K -bit secret key

3. In advance, Alice and Bob agree upon a set of K Haar-random
m ×m unitary matrices, Uk .

4. Alice encrypts the quantum state |ψx〉 by applying Uk associated
with the key, she sends this state.

5. Bob decrypts using U†
k .
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Boson Sampling inspired cryptography

Net secure communication rate = logM − logK

Asymptotic communication and secret key rates, m = n3.
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Framework & Relation to Boson Sampling

I Technical results from Aaronson & Arkhipov are crucial in
calculating the key consumption, but the classical
computation complexity of Boson Sampling is not required.

I We go beyond the no-collision regime

I Use accessible information as security quantifier — quantum
data locking [8,9].

I Bounded quantum memories: Eve can store quantum
information for no longer than a limited (known) time.

[8] D. P. DiVincenzo et al., Phys. Rev. Lett. 92, 067902 (2004).
[9] S. Guha et al., Phys. Rev. X 4, 011016 (2014).
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Mutual information

X is a random variable with M outcomes, each occuring with
probability {px}

H(X ) = −
M∑
x

px log2(px) (2)

H(A) H(B)IAB

I (A;B) = H(A) + H(B)− H(A,B)

Iacc(A;B) = max
MB

{I (A;B)} (3)
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Quantum data locking
Alice to Bob:

ρ =
1

M

M∑
x=1

|ψx〉 〈ψx | → I (X ;YK ) = log2M

Alice to Eve: (logK bits of information missing)

ρ =
1

M

M∑
x=1

K∑
t=1

Ut |ψx〉 〈ψx |U†t → I (X ;Y ) =??

Classically

I (X ;YK )− I (X ;Y ) = I (X ;K |Y ) ≤ H(K ) ≤ log2 K (4)

Quantum data locking

Iacc(X ;YK )− Iacc(X ;Y )� log2 K (5)
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Boson Sampling inspired cryptography

The goal is to upper bound Iacc(X ;E ), with high probability.

Iacc(X ;E ) ≤ 2ε logM, M ∼
(
m

n

)
(6)

Accessible information (Eve with finite-time quantum memory)

Iacc(X ;E ) = max
ME

[H(X ) + H(E )− H(X ,E )] (7)

Bob:

ρA =
1

M

M∑
x=1

|ψx〉 〈ψx | (8)

Eve:

ρAE =
1

M

M∑
x=1

|x〉 〈x | ⊗ 1

K

K∑
t

Ut |ψx〉 〈ψx |U†t . (9)
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Sketch security proof

ρAE =
1

M

M∑
x=1

|x〉 〈x | ⊗ 1

K

K∑
t

Ut |ψx〉 〈ψx |U†t︸ ︷︷ ︸
ρxE

. (10)

Eve’s POVM elements

{αy |φ〉 〈φ|},
∑
y

αy |φ〉 〈φ| = 1 (11)

I (X ;Y ) =
∑
y

αy

{
− 〈φy |ρAE |φy 〉 log 〈φy |ρAE |φy 〉

+
1

M ′

M′∑
x=1

〈φy |ρxE |φy 〉 log 〈φy |ρxE |φy 〉
}
. (12)
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Matrix Chernoff bound

Theorem
Let {Xt}t=1,...,T be T i.i.d. d-dimensional Hermitian-matrix-valued
random variables, with E[X ] = µ1 Then, for δ ≥ 0 [10]:

Pr

{
1

T

T∑
t=1

Xt 6≤ (1 + δ)E[X ]

}
≤ d exp

{
−T δ2µ

4 ln 2

}
. (13)

The matrix Chernoff bound implies

1

M ′

M′∑
x=1

ρxE ≤ (1 + ε)ρ̄E (14)

holds true with almost unit probability.
[10] R. Ahlswede and A. Winter, IEEE Transactions on Information Theory 48,
569 (2002).
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Sketch security proof

2. We apply a tail bound from A. Maurer to show that

〈φ|ρxE |φ〉 ≥ (1− ε)〈φ|ρ̄E |φ〉 , (15)

Theorem
[11] Let {Xk}k=1,...,K be K i.i.d. non-negative real-valued random
variables, with Xk ∼ X and finite first and second moments,
E[X ],E[X 2] <∞. Then, for any τ > 0 we have that

Pr

{
1

K

K∑
k=1

Xk < (1− τ)E[X ]

}
≤ exp

(
−Kτ2E[X ]2

2E[X 2]

)
. (16)

γ =
E[X 2]

E[X ]2
→ (Photon bunching modifies γ)

[11] Maurer, J. Inequalities in Pure and Applied Mathematics 4, 15 (2003)
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Boson Sampling inspired cryptography

How it relates to Boson Sampling: calculate the key consumption
γ, we need:

X =|〈φ|U|ψx〉|2,
=Perm[A]∗Perm[A]. (17)

EU [X ] =
n!

mn
(18)

The fourth moment of the permanent can be computed as [2]

EU [X 2] = EU [Perm[A]2Perm[A∗]2] =
n!(n + 1)!

m2n

γ =
E[X 2]

E[X ]2
≤ 2(n + 1) (19)

[2] S. Aaronson and A. Arkhipov, Quantum Information & Computation 14,
1383 (2014)
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sketch security proof

Then:

I Account for photon bunching

I Extend to all codewords x

I Extend to all vectors (Eve’s) |φ〉

Putting the above results together

I (X ;Y ) ≤ 2ε logM (20)

Provided

logK ≥ log γ + log
d

M
+ O(log 1/ε) . (21)
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Probability of failure

Pfail = exp

(
log 2d − ε

4

√
M ′Kcmin

2

)

+ exp

[
2d log

(
20

εcmin

)
+
εM ′

4
logM ′ − KM ′ε3

128γ

]
. (22)

This probability is exponentially suppressed if

K > 128γ

[
2

ε3
d

M ′
log

(
20

εcmin

)
+

1

4ε2
logM ′

]

logK ∼ log γ + log
d

M
+ O(log 1/ε) . (23)
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Scaling up the protocol

Consider a train of ν � 1 signal transmissions. Alice encodes
information in code words of the form

|ψx〉 = |ψx1〉 ⊗ |ψx2〉 ⊗ . . . |ψxν 〉 , (24)

This in particular implies

ρ̄
(ν)
E := EU [Uk |ψx〉〈ψx |U†k ] = ρ̄⊗νE , (25)

and therefore

c
(ν)
min := min

φ
〈φ|ρ̄(ν)E |φ〉 = min

φ
〈φ|ρ̄⊗νE |φ〉 = cνmin (26)

γ(ν) := max
φ

EU [|〈φ|Uk |ψx〉|4]

EU [|〈φ|Uk |ψx〉|2]2
. (27)
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Bit rates with losses
In the limit ν � 1:

1

ν
logK (ν) ≈ log γ + log

d

M
, d =

(
n + m − 1

n

)
(28)
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Figure: Net number of bits transmitted, 20 modes and 4 photons.
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Bit rates with losses
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Figure: Net number of bits transmitted per optical mode in the presence
of loss. We use strictly less photons than n = m/2 as per BB84.

“Boson Sampling” cryptography - log
(
m
n

)
/m bit per mode

BB84 - at most 0.5 bit per mode
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Boson-Samping crypto: summary

I A quantum private-key encryption protocol, first actual
application of Boson Sampling

I Information-theoretic security proof – holds for any number of
modes m and number of photons n.

Future work:

I Removing the need for the bounded storage model

I Scattershot, weak coherent states

I Error-correcting code, privacy amplification

I Time-bin encoding for long distance communication
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