

0.

Kaden Hazzard Rice University

Louisiana State University Quantum Krispy Kreme seminar Mar 27, 2015

NO DEMOCRACY FOR ENTANGLEMEN not all entanglements are created equal

 $B_0 \odot$

100 ստ

Collaborators

Michael Foss-Feig JQI, NIST-Maryland

Tom Killian *Ric*e

Ana Maria Rey

Joe Britton, John Bollinger, Brian Sawyer (L-to-R) NIST-Boulder

Also: Salvatore Manmana (Goettingen), Mauritz van den Worm, Michael Kastner (Stellenbosch), Tilman Pfau (Stuttgart), Emanuele Dalla Torre (Bar Ilan), JILA molecule group (Jun Ye, Debbie Jin, ...)

UTOPIA MECHANICUS BETTER LIVING THROUGH TECHNOLOGY

QUANTUM

Quantum metrology: magnetic fields, rotation, gravity Quantum communication Quantum computation Advanced materials

gravitational field

thermometry in a cell

UTOPIA MECHANICUS BETTER LIVING THROUGH, TECHNOLOGY

QUANTUM

Quantum metrology: magnetic fields, rotation, gravity Quantum communication

Advanced materials

gravitational field

NV1

Entanglement is necessary for all quantum technology

So all that's left is... make more entanglement, please?

So all that's left is... make more entanglement, please? Ramsey protocol sensing parity protocol sensing iommunication sensing FA computation entangled separable Entanglement isn't monolithic : each quantum technology requires a different kind of entanglement

• Decoherence is a fundamental challenge

decoherence: open quantum

systems

open

Modeling open systems

Modeling open systems

church of the smaller Hilbert space

Many approaches; each has advantages and disadvantages Here we use master equation Pros: No need to double system size, reduces extraneous details Cons: assumes Markovian (accurate for many systems) only gives averages (can't condition on measurement record)

system
 probability distr.
 (master eqn)

$$i\partial_t \rho = \left[H_s, \rho\right] + L[\rho]$$

with the "jump operator"

entanglement matters for matter

All unified by the XXZ model

XXZ model is everywhere Systems have $H = \sum_{ij} [J_{ij}^{z} S_{i}^{z} S_{j}^{z} + \frac{J_{ij}^{\perp}}{2} (S_{i}^{+} S_{j}^{-} + h.c.)]$

A zoo!

Without special engineering: Molecules (yesterday):

lons:

with

Rydbergs:

Ion interactions $H = \sum_{ij} J_{ij}^{z} S_{i}^{z} S_{j}^{z}$

Spin-dependent trapping

Coulomb energy depends on whether spin is up or down \rightarrow Ising

 $B_0 \odot$

decoherence in trapped ions

illustrative; form is the same for many systems

Uys et al., *PRL* **105**, 200401 (2010)

$$\dot{\rho} = -i \left[\frac{J}{N} \sum_{i>j} \hat{\sigma}_i^z \hat{\sigma}_j^z, \rho \right] + \frac{\Gamma_{ud}}{2} \sum_j \left(2\hat{\sigma}_j^- \rho \, \hat{\sigma}_j^+ - \rho \hat{\sigma}_j^+ \hat{\sigma}_j^- - \hat{\sigma}_j^+ \hat{\sigma}_j^- \rho \right) \\ + \frac{\Gamma_{du}}{2} \sum_j \left(2\hat{\sigma}_j^+ \rho \, \hat{\sigma}_j^- - \rho \hat{\sigma}_j^- \hat{\sigma}_j^+ - \hat{\sigma}_j^- \hat{\sigma}_j^+ \rho \right) \\ + \frac{\Gamma_{el}}{8} \sum_j \left(2\hat{\sigma}_j^z \rho \, \hat{\sigma}_j^z - \rho \hat{\sigma}_j^z \hat{\sigma}_j^z - \hat{\sigma}_j^z \hat{\sigma}_j^z \rho \right)$$

Markovian master equation is basically exact

intermission: outline of results

So far: motivation & set up

Up next: results

- I. Ising + decoherence: correlations
- Comparative entanglement (no decoherence)

Effects of decoherence (Ising model)

Quench dynamics

Same as yesterday's Ramsey/quantum quench:

except will also look at other initial spin angles and final measurements

$H = \sum_{ij} J_{ij}^z S_i^z S_j^z$ |Ising isn't classical!

- N.N → cluster state: one-way quantum computation
- all-to-all → GHZ state:
 Schroedinger cats, Heisenberg
- general \rightarrow squeezing

Raussendorf & Briegel, PRL 86, 5188 (2001)

Solution: Ising correlations $H = \sum_{i \neq j} \frac{J_{ij}}{2} S_i^z S_j^z$

Example of solution for correlation ()

 $\overline{|s_J|} = i(\Gamma_{ud} - \Gamma_{du})/2 + 2J/N$

Ising: Bloch vector

0

Ising decoherence: Bloch vector

Ising decoherence: spin correlations

Turning on decoherence, correlations damp in time

Ising decoherence: squeezing

all-to-all or one-axis-twisting

Ising decoherence: GHZ-nes

Metrological gain via GHZ-like protocol (Ramsey with parity measurement)

Emission (blue) is *much* worse than dephasing! (note different scales)

Ising (+more) decoherence: full counting statistics

P(

Ion experiment

Warning: preliminary, cherrypicked, ...

Bollinger group, unpublished

Comparative entanglement

Ising: no decoherence, entanglement measures

Beyond Ising: XXZ, no decoherence

Ising has similar growth of correlations, but different propagation

Ising + transverse field. Steady states with decoherence?

Steady state has
coherence
correlations
entanglement!
(but threshold!)

Charlex Xu, Hazzard --- 2 spins

Conclusions

- XXZ describes many experimental systems
- Exactly solved dissipative quantum many-body dynamics
 - Ising, but not classical
- Comparative study of entanglement
 - different resources grow differently!

- Ising solution with decoherence:
 - Foss-Feig, Hazzard, Bollinger, & Rey, PRA 87, 042101 (2013)
 - Foss-Feig, Hazzard, Bollinger, Rey, & Clark, New Journal of Physics 15, 113008 (2013)
 - van den Worm and Kastner have solved without decoherence for special tipping angles
 - Comparative entanglement, experimental realizations:
 - Hazzard, van den Worm, Foss-Feig, Manmana, Dalla Torre, Pfau, Kastner, & Rey, PRA 90, 063622 (2014)

Conclusions

- XXZ describes many experimental systems
- Exactly solved dissipative quantum many-body dynamics
 - Ising, but not classical
- Comparative study of entanglement
 - different resources grow differently!

- Ising solution with decoherence:
 - Foss-Feig, Hazzard, Bollinger, & Rey, PRA 87, 042101 (2013)
 - Foss-Feig, Hazzard, Bollinger, Rey, & Clark, New Journal of Physics 15, 113008 (2013)
 - van den Worm and Kastner have solved without decoherence for special tipping angles
 - Comparative entanglement, experimental realizations:
 - Hazzard, van den Worm, Foss-Feig, Manmana, Dalla Torre, Pfau, Kastner, & Rey, PRA 90, 063622 (2014)