Fundamental rate-loss tradeoff for optical quantum key distribution

Masahiro Takeoka (NICT)

Saikat Guha (BBN)

Mark M. Wilde (LSU)

Raytheon BBN Technologies

Quantum Krispy Kreme Seminar @LSU

January 30, 2015

- Motivation
- Main result
- Problem setting (generic QKD protocol) and proof outline
- Future outlook

- Quantum Key Distribution can generate a shared key perfectly secret against any eavesdropper.
- Various (repeaterless) QKD protocols have been proposed so far.
- In all known protocols, the key rate decreases linearly with respect to the channel loss.

Scarani et al., Rev. Mod. Phys. 81, 1301 (2009)

Example1: Ideal single-photon BB84

- Secret key generation rate for the single-photon effcient BB84

Scarani et al., RMP 81, 1301 (2009)

$$R = \beta I(A; B) - \chi(B; E)$$

- Ideal case

$$\eta_D = 1, \quad \epsilon = v_D = 0$$

 ϵ : optical noise η_D : Bob's detector efficiency v_D : electronics noise β : EC efficiency

Example3: Reverse Coherent Information

$$R = \max_{\rho} I_R(\rho_{RB})$$

 $\psi^{\otimes n}$

Garcia-Patron et al., PRL 102, 210501 (2009) Pirandola et al., PRL 102, 050503 (2009)

Reverse coherent information

$$I_R(\rho_{RB}) = H(R)_\rho - H(RB)_\rho$$

 $H(R)_{\rho}$: von Neumann entropy of $\operatorname{Tr}_{B}[\rho_{RB}]$

Is this a fundamental rate-loss tradeoff in any optical QKD?

Are there yet-to-be-discovered optical QKD protocols that could circumvent the linear rate-loss tradeoff (without repeaters or trusted notes)?

- We show that this is the rate-loss trade off is a fundamental limit.
- We prove that the secret key agreement capacity (private capacity) of a lossy optical channel assisted by two-way public classical communication is *upper bounded* by:

- Generic point-to-point QKD protocol and its capacity (secret key agreement capacity assisted by two-way public classical communication)
- Squashed entanglement of a quantum channel as an upper bound on the two-way assisted SKA capacity
- Pure-loss optical channel
- Loss and noise optical channel
- Summary

- Generic point-to-point QKD protocol and its capacity (secret key agreement capacity assisted by two-way public classical communication)
- Squashed entanglement of a quantum channel as an upper bound on the two-way assisted SKA capacity
- Pure-loss optical channel
- Loss and noise optical channel
- Summary

General secret key agreement assisted by unlimited two-way public classical communication

General secret key agreement assisted by unlimited two-way public classical communication

two-way classical communication

Secret key generation rate: *R*=*k*/*n*

- Generic point-to-point QKD protocol and its capacity (secret key agreement capacity assisted by two-way public classical communication)
- Squashed entanglement of a quantum channel as an upper bound on the two-way assisted SKA capacity
- Pure-loss optical channel
- Loss and noise optical channel
- Summary

Upper bound on the key rate: squashed entanglement of a quantum channel

$$R \le E_{\mathrm{sq}}(\mathcal{N}) = \max_{|\psi\rangle_{AA'}} E_{\mathrm{sq}}(A;B)_{\rho}$$

 $E_{
m sq}(\mathcal{N})$: Squashed entanglement of a quantum channel MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

 $E_{
m sq}(A;B)_{
ho}$: Squashed entanglement (of a bipartite state ρ_{AB})

Christandl, Winter, J. Math. Phys. 45, 829 (2004)

Squashed entanglement

Squashed entanglement: $E_{sq}(A;B)$ Christandl, Winter, J. Math. Phys. 45, 829 (2004)

$$E_{sq}(A;B)_{\rho} \equiv \frac{1}{2} \inf_{E \to F} I(A;B|E')_{\rho}$$

$$I(A;B|E')_{
ho}$$
 conditional quantum mutual information

$$= H(AE')_{\rho} + H(BE')_{\rho}$$
$$-H(ABE')_{\rho} - H(E')_{\rho}$$
$$H(A)_{\rho} = -\text{Tr}[\rho_A \log \rho_A]$$

$$\rho_{AB} = \mathrm{Tr}_E[|\phi\rangle\langle\phi|_{ABE}]$$

Channel S should be chosen to *squash* the quantum correlations between Alice and Bob (the squashing channel)

- Entanglement measure for a bipartite state (LOCC monotone, ...)
- Inspired by secrecy capacity upper bound in classical theory (intrinsic information)

Squashed entanglement of a quantum channel NICT

Definition:

$$E_{sq}(\mathcal{N}) = \max_{|\psi\rangle_{AA'}} E_{sq}(A;B)_{\rho} \text{ where } \rho_{AB} = \mathcal{N}_{A'\to B}(|\psi\rangle\langle\psi|_{AA'})$$

$$A \leftarrow |\psi\rangle_{AA'} \xrightarrow{A'} \mathcal{N} \longrightarrow B$$

Main theorem

Theorem1

 $E_{\rm sq}(N)$ is an upper bound on the secret key generation rate R $R \leq E_{\rm sq}(\mathcal{N})$

MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

Proof outline

1. Secret key distillation upper bound

Christandl, et al., arXiv:quant-ph/0608119

2. New subadditivity inequality for the squashed entanglement

Proof outline

1. Secret key distillation upper bound

Theorem 3.7. Squashed entanglement $E_{sq}(A;B)_{\rho}$ is an upper bound on the distillable key rate from a tensor product state $\rho_{AB}^{\otimes n}$

Christandl, et al., arXiv:quant-ph/0608119

The statement is proved by using the following four properties:

- 1. Monotonicity (does not increase under LOPC)
- 2. Continuity: if $||\rho \sigma||_1 \leq \epsilon$ then $|E_{sq}(A; B)_{\rho} E_{sq}(A; B)_{\sigma}| \leq f(\epsilon) \quad \left(\lim_{\epsilon \to 0} f(\epsilon) \to 0\right)$
- 3. Normalization: $E_{sq}(A; B)_{\gamma} \ge \log d$ γ : private state H

vate state Horodecki et al, PRL 94, 160502 (2005)

4. Subadditivity on tensor product states: $E_{sq}(A^n; B^n)_{\rho^{\otimes n}} \leq n E_{sq}(A; B)_{\rho}$

 $E_{\mathrm{sq}}(A^n; B^n)_{\rho^{\otimes n}} \le n E_{\mathrm{sq}}(A; B)_{\rho}$

The similar technique is applicable to the channel scenario except 4.

Proof outline

Product state

4. Subadditivity on tensor product states: $E_{sq}(A^n; B^n)_{\rho^{\otimes n}} \leq n E_{sq}(A; B)_{\rho}$

Can be replaced by $E_{
m sq}(\mathcal{N}^n) \leq n E_{
m sq}(\mathcal{N})$?

Subadditivity of $E_{sq}(N)$?

 $E_{
m sq}(\mathcal{N}^n) \leq n E_{
m sq}(\mathcal{N})$ is true if one can show something like

$$E_{sq}(A; B_1B_2)_{\rho} \le E_{sq}(A; B_1)_{\rho} + E_{sq}(A; B_2)_{\rho} \quad [A = A_1A_2]$$

Proof outline

Subadditivity of E_{sq} ?

 $E_{
m sq}(\mathcal{N}^n) \leq n E_{
m sq}(\mathcal{N})~~{
m is}$ true if one can show something like

$$E_{sq}(A; B_1B_2)_{\rho} \le E_{sq}(A; B_1)_{\rho} + E_{sq}(A; B_2)_{\rho} \qquad [A = A_1A_2]$$

Monogamy of entanglement

$$E_{sq}(A; B_1B_2)_{\rho} \ge E_{sq}(A; B_1)_{\rho} + E_{sq}(A; B_2)_{\rho}$$

Koashi and Winter, Phys. Rev. A 69, 022309 (2004)

New subadditivity-like inequality

 $E_{sq}(A; B_1B_2)_{\rho} \le E_{sq}(A; B_1)_{\rho} + E_{sq}(A; B_2)_{\rho}$ is not possible.

However, we are able to show the following inequality:

<u>Lemma</u>

For any five-party pure state $\psi_{AB_1E_1B_2E_2}$ $E_{sq}(A; B_1B_2)_{\psi} \leq E_{sq}(AB_2E_2; B_1)_{\psi} + E_{sq}(AB_1E_1; B_2)_{\psi}$ holds.

MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

Proof consists of a chain of (in)equalities based on

-Duality of conditional entropy H(K|L) + H(K|M) = 0 for $|\psi\rangle_{KLM}$

-Strong subadditivity $I(K; L|M)_{\rho} \ge 0$ for ρ_{KLM}

Proof outline

Additivity of
$$E_{sq}(\mathcal{N})$$

Proof outline

From the following four conditions:

- 1. Monotonicity (does not increase under LOPC)
- 2. Continuity: if $||\rho \sigma||_1 \leq \epsilon$ then $|E_{sq}(A; B)_{\rho} E_{sq}(A; B)_{\sigma}| \leq f(\epsilon) \left(\lim_{\epsilon \to 0} f(\epsilon) \to 0\right)$
- 3. Normalization: $E_{sq}(A; B)_{\gamma} \ge \log d$ (γ : private state)
- 4. Additivity: $E_{\mathrm{sq}}(\mathcal{N}^n) \leq n E_{\mathrm{sq}}(\mathcal{N})$

One can show

$$\Rightarrow R \leq E_{\rm sq}(\mathcal{N}) + f(\epsilon)$$

$$f(\epsilon) = \left(16\sqrt{\epsilon}\log d + 4h_2(2\sqrt{\epsilon})\right)/n$$

For the details of the proof, see

MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

- Generic point-to-point QKD protocol and its capacity (secret key agreement capacity assisted by two-way public classical communication)
- Squashed entanglement of a quantum channel as an upper bound on the two-way assisted SKA capacity
- Pure-loss optical channel
- Loss and noise optical channel
- Summary

Lossy bosonic channel

$$E_{sq}(\mathcal{N}_{LB}) = \max_{\substack{|\psi\rangle_{AA'}}} E_{sq}(A; B)_{\rho}$$

$$= \max_{\substack{|\psi\rangle_{AA'}}} \inf_{\substack{S_{E \to E'}}} \frac{1}{2} I(A; B | E')$$
Need to find a good squashing channel (in a heuristic way...)
Lossy bosonic channel
$$in a heuristic way...)$$

$$I(A; B | E')$$

$$in minimized at \eta_1 = 1/2$$
maximized with $|\psi\rangle_{AA'}^{TMSV}$
(Two-mode squeezed vacuum)

$$E_{sq}(\mathcal{N}_{LB}) \le g((1+\eta)N_s/2) - g((1-\eta)N_s/2)$$

 $g(x) = (x+1)\log_2(x+1) - x\log_2 x$

N_s: a mean input power (average photon number of one share of the TMSV)

- Generic point-to-point QKD protocol and its capacity (secret key agreement capacity assisted by two-way public classical communication)
- Squashed entanglement of a quantum channel as an upper bound on the two-way assisted SKA capacity
- Pure-loss optical channel
- Loss and noise optical channel
- Summary

Loss and thermal noise channel

Loss and thermal noise channel

$$E_{sq}(\mathcal{N}) = E_{sq}(\mathcal{A}_{G} \circ \mathcal{L}_{T}) \leq E_{sq}(\mathcal{L}_{T})$$
Data processing inequality
for quantum conditional mutual information

$$P_{2}(\mathcal{N}), Q_{2}(\mathcal{N}) \leq \log_{2} \frac{1+T}{1-T} = \log_{2} \frac{(1-\eta)N_{B}+1+\eta}{(1-\eta)N_{B}+1-\eta}$$

$$P_{2}(\mathcal{N}), Q_{2}(\mathcal{N}) \leq \log_{2} \frac{1+T}{1-T} = \log_{2} \frac{(1-\eta)N_{B}+1+\eta}{(1-\eta)N_{B}+1-\eta}$$

$$= E_{sq} UB N_{B}=0$$

Summary MT, Guha, Wilde, Nat. Commun. 5; 5235 (2014) MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

- The secret key rate of *any* repeaterless QKD protocols in a lossy optical channel is upper bounded by

$$\log_2 rac{1+\eta}{1-\eta}$$
 (weak converse)

- The bound is based on the squashed entanglement of a quantum channel, which is a general upper bound on the two-way classically assisted secret key agreement capacity.

- Open problems
 - True two-way assisted capacity?
 - Tight bound for noisy channel?
 - Finite block code analysis

(needs strong converse or second order analysis)

Finite *n* analysis

- Our upper bound is a *weak converse*
 - For a tight upper bound on finite block length, a strong converse or a second order analysis should be established.
- However, we can estimate the effect of finite block length from our result.

$$R \leq E_{sq}(\mathcal{N}) + f(\epsilon)$$
$$f(\epsilon) = \left(16\sqrt{\epsilon}\log d + 4h_2(2\sqrt{\epsilon})\right)/n$$
$$\mathcal{N} \leq \frac{1}{1 - 16\sqrt{\epsilon}} \left(E_{sq}(\mathcal{N}) + 4h_2(2\sqrt{\epsilon})/n\right)$$

$$R \le \frac{1}{1 - 16\sqrt{\epsilon}} \left(E_{\rm sq}(\mathcal{N}) + 4h_2(2\sqrt{\epsilon})/n \right)$$

ɛ: secrecy (based on the trace distance criteria)n: code length

Example in a pure-loss optical channel:

200 km fiber (0.2dB/km loss) $\epsilon = 10^{-10}, n = 10^4$ $1/(1 - 16\sqrt{\epsilon}) \approx 1.0002$ $4h_2(2\sqrt{\epsilon})/n \approx 1.36 \times 10^{-7}$ $R \le 2.887 \times 10^{-4}$ $\approx 2.885 \times 10^{-4}$

MT, Guha, Wilde, Nat. Commun. 5; 5235 (2014)

Few more slides...

Extension of the results to

- Quantum repeaters
- Multipartite secret key sharing

Ads..

- QCrypt2015
- Summer internship at NICT

Upper bound on quantum repeaters

Quantum communication with N repeater stations:

Upper bound on quantum repeaters

Quantum communication with N repeater stations:

Multi-party key distribution

Key rate upper bound

$$R \le \frac{1}{m} E_{\mathrm{sq}}^{(m)}(\mathcal{N})$$

$$E_{\rm sq}^{(m)}(\mathcal{N}) \equiv \max_{|\phi\rangle_{AA'}} E_{\rm sq}(A; B^{(1)}; B^{(2)}; \cdots; B^{(m)})_{\rho},$$

Squashed entanglement of a quantum broadcast channel

- Channel examples?
- How tight?

Few more slides...

Extension of the results to

- Quantum repeaters
- Multipartite secret key sharing

Ads..

- QCrypt2015
- Summer internship at NICT

QCrypt2015 & UQCC2015

Tokyo, Japan September 28 - October 2, 2015

QCrypt2015 (4.5days)

Discuss the latest theory and experiments on quantum cryptography and related fields

UQCC2015 (0.5days, Sep 28)

Invites engineers, potential users, media etc, to show the SOTA QKD performance & applications and discuss the possible business solutions

http://2015.qcrypt.net/

http://2015.uqcc.org/

Where? Tokyo, Japan

Central area of Tokyo

Stata - 8x2 - 8x2 (Photo provided by Hitotsubashi Hall of Hitotsubashi Univ.)

Summer internship at Quantum ICT Lab in NICT

QKD network, architecture, applications

QKDプラットフォーム

③ 内部ネットワークでのなりすまし防止

圳点Δ

レイヤ3 スイッチ

認証済み 通信ケーブル

レイヤ2

スイッチ

現在のIPsecの ① データ伝送の完全秘匿化 圳 点 B 能を損たわずい 認証なゲ 1関数 🥼 暗号化IPパク IPアドレス ペイロード ത 回線暗号装置 (AES方式)

Quantum optics: Entangled sources, PNRD, QIP protocols

Collaborative projects

-Optical space communication G -Nano ICT G -Frequency standard G

Theory: quantum information theory, quantum optics, physical layer security...