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Abstract 

Over the past few decades, rapid changes in technology have driven a sig-
nificant increase in the amount and types of data stored on and processed by 
digital devices. Digital devices may be used in the commission of numerous 
criminal activities, including unauthorized data exfiltration, fraud, employee 
misconduct, kidnapping, child pornography, murder, and more. After being 
accused of committing a crime, a common defense is the so-called Trojan 
horse defense. In the Trojan defense, the defendant claims that someone 
or something else is responsible for the crime committed as represented by 
digital evidence present on one or more devices. Traditionally, the Trojan 
defense has often been dismissed by investigators after a cursory examina-
tion of digital devices for the presence of malware. While this process might 
have led to fair conclusions in the past, we now face increasingly sophisti-
cated cyber attacks and malware infections, and it is increasingly possible 
that someone or something (e.g., malware) other than the ”obvious” party 
may be guilty. This chapter discusses the impact of modern malware on 
digital investigations and examines possible solutions to the problem of un-
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raveling the accuracy of the Trojan defense, including the use of memory 
forensics techniques. 

Keywords: memory forensics, computer forensics, Trojan defense, digital 
investigation, malware 

1. Introduction

In recent times, digital forensics capabilities have been significantly ex-
panded through the development of a number of new tools and techniques. 
Modern forensic tools can reveal data in plain sight (e.g., files containing 
copies of credit card statements, spreadsheets), data that was previously 
deleted by users (files, SMS messages, logs, etc.), illicit data (NSFW ma-
terials, sensitive documents which the user is not authorized to possess, 
digital contraband, etc.), evidence that systems were used to attack others 
(e.g., command histories), geo-location information, and more. Increasingly, 
digital forensics tool suites support “pushbutton forensics,” which allow for 
rapid recovery of digital evidence, data correlation, creation of timelines, and 
selective acquisition of evidence without significant effort, or in some cases, 
without significant expertise on the part of investigators. Making digital 
forensics tools easier to use and automating tedious investigatory processes 
is undoubtedly useful, as it reduces investigator fatigue and case backlogs. 
But there is also a significant downside. As digital forensics techniques have 
evolved, so has the design and capabilities of modern malware. It is becom-
ing increasingly difficult to conduct digital investigations correctly, and in 
the face of sophisticated malware, traditional storage forensics methods are 
no longer sufficient to refute the Trojan defense. 

Historically, malware caused disruption primarily by deleting data and 
limiting the performance or capabilities of computing devices (Rankin, 
2018). Furthermore, the incentives behind development and deployment 
of historical malware were often unclear. In sharp contrast, the design and 
development of modern malware is usually motivated by a number of dis-
tinct factors, including the potential for monetary gain or commercial ad-
vantage, revenge, the needs of nation-state actors, and more. To this end, 
modern malware frequently alters the state of computing devices, infiltrates 

Email addresses: golden@cct.lsu.edu (Golden G. Richard III), andrew@dfir.org 
(Andrew Case), mmanna3@lsu.edu (Modhuparna Manna), ehahne@lsu.edu (Elsa A. M. 
Hahne), aaligombe@towson.edu (Aisha Ali-Gombe) 

2 

mailto:aaligombe@towson.edu
mailto:ehahne@lsu.edu
mailto:mmanna3@lsu.edu
mailto:andrew@dfir.org
mailto:golden@cct.lsu.edu


and exfiltrates data, and performs unauthorized activities “on behalf of” 
users, such as web surfing, sending email, and downloading files. Detec-
tion of modern malware is neither straightforward nor certain, particularly 
if only traditional digital forensics techniques are utilized. These techniques 
typically examine only the contents of non-volatile storage, whereas many 
strains of modern malware and attack toolkits leave absolutely no traces 
on disk (Kaspersky Research Team, 2014, 2015; Schroeder, 2019; Wadner, 
2014). Thus, the impact modern malware can have on innocent users is 
enormous, as malware can perform virtually any action that a user might 
perform, including the download of illicit or illegal materials, such as child 
pornography, without being easily detected. Furthermore, while personal se-
curity products such as antivirus programs are adept at detecting historical, 
well-known, and established malware, detection rates for new and emer-
gent strains remain notoriously low. Thus, “personal computer hygiene” is 
insufficient as a defensive measure against modern malware. 

For individuals accused of wrongdoing involving digital devices, there is 
a very substantial burden in defending themselves when expensive techni-
cal expertise is required to recover exculpatory evidence such as proof of 
a malware infection. We argue that not only is a deliberate and earnest 
search for malware a necessary component of most digital forensics cases 
(where we strongly agree with (Bowles and Hernandez-Castro, 2015)), but 
traditional forensics techniques must be supplemented with modern analysis 
techniques to “balance the scales.” The most appropriate and powerful of 
modern techniques is memory forensics, which deeply examines the state of 
a system through analysis of volatile memory (RAM). By leveraging mem-
ory forensics, investigators can uncover a wealth of information that is not 
recorded in the file system, including signs of malware infection. Such anal-
ysis performed by experts is necessary to remove the burden of proof from 
suspects who have no realistic chance of discovering, analyzing, or docu-
menting the malware capabilities themselves. This is a complicated issue, 
however, as substantial time and expertise is needed to properly conduct 
thorough memory forensics investigations across a variety of devices, oper-
ating system versions, and applications. As such, the resources and costs 
associated with this kind of analysis can quickly become daunting and pro-
hibitive. 

The rest of the chapter is organized as follows: Section 2 discusses the 
Trojan defense in more detail. Section 3 briefly surveys traditional digital 
forensics methodologies. Section 4 traces the evolution of modern malware 
and the challenges posed for digital forensics investigation, including disen-
tangling user actions and malware effects. Section 5 outlines memory foren-
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sics capabilities and how memory forensics can be used to more accurately 
detect malware. Section 6 provides some concluding thoughts. 

2. The Trojan Defense 

Cybercrimes have escalated significantly over the past two decades (Cy-
bercrime, 2019). The entire infrastructure of computer systems and net-
works has changed dramatically, and crimes that once were somewhat simple 
to detect are now much more complicated. Law enforcement faces serious 
challenges, on multiple levels, in combating such crimes. While the world 
becomes closer and closer connected through the internet and criminals rou-
tinely access their victims’ computers remotely and escape without leaving 
any identifiable trace, law enforcement must operate in accordance with lo-
cal, state, or federal cyberlaws, which vary from one geographic area to the 
next (Luehr, 2005). Many defendants charged with cybercrimes cite the 
“Trojan horse defense,” stating that, without their knowledge, a malicious 
cybercriminal hacked into their computer to commit the crime, or planted 
malware responsible for said crime (Brenner et al., 2004). 

Suppose someone named David is charged with possession of child pornog-
raphy on his computer. If David pleads the Trojan defense, his claim is that 
he did not intentionally or knowingly download this content. Instead, an 
anonymous and unidentifiable cybercriminal or malware placed the mate-
rial on his computer. Because it is often difficult or impossible for prose-
cutors to refute this defense, that is, proving the defendant is responsible 
for downloading the illegal content, many of them escape either prosecution 
or conviction. For example, Aaron Caffrey was charged with unauthorized 
computer modifications for launching a DDoS (Distributed Denial of Ser-
vice) attack against a fellow chatroom user, “Bokkie.” The DDoS attack 
passed through several servers and brought traffic at the Port of Houston to 
a dangerous standstill. Caffrey, however, argued that while the attack was 
launched from his computer, he himself did not launch it; instead, it was 
launched by a hacker group that had surreptitiously planted trojan malware 
on his computer and later wiped it away. Even though Caffrey had no evi-
dence to substantiate his theory, he was still acquitted simply because the 
prosecution had no evidence to rebut it (Brenner et al., 2004). 

Although the Trojan defense results in acquittals in some cases, it is not 
always successful. There are examples of cases where the defendant claimed 
the Trojan defense and still got convicted. In the Mark Rawlinson case, 
for instance, the defense claimed a virus was responsible for downloading 
the thousand pornographic photos found on his computer. The court did 
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not accept the Trojan defense in this case, and Rawlinson was convicted 
(Bowles and Hernandez-Castro, 2015). 

There is an ongoing disagreement among academics, practitioners, and 
law enforcement about whether malware attacks can result in an innocent 
person being ultimately held responsible for crimes like possession of child 
pornography, tax fraud, DDoS, and other attacks. For instance, in the 
Miller case. When Miller was charged with possession of child pornography, 
he contacted the FBI agent in charge claiming a virus was responsible for the 
crime. Agent Kyle, the investigator in charge, refuted the Trojan defense 
arguments saying a virus could not do such a thing (Monterosso, 2010). 
This might be true in some clear-cut cases, however, the modern scenario has 
completely changed. Nowadays, malware has become sophisticated enough 
to download child pornography, modify the browser information stored in the 
temporary cache locations, send out unwanted emails, and so on. Consider 
the Matthew Bandy case, where Bandy was originally charged with life 
imprisonment for possession of child porn until forensic investigator Tami 
Loehrs found more than 200 malware-infected files in his computer. After 
some negotiation and with the help of Loehrs findings, Bandy was finally 
given an 18-month probation period, during which he had to register as a sex-
offender (Mcelroy, 2007). The Trojan defense, therefore, makes cybercrime 
cases highly complicated. 

We emphasize that even if the defendant is finally acquitted, it does not 
undo much of the damage already done. Just being charged with a crime 
like possession of child pornography can be very costly, from both monetary 
and psychological points of view. The harm can include severe emotional 
stress, loss of reputation, employment, financial resources, and emotional 
support. When Michael Fiola was charged with child pornography, he lost 
his job with the Massachusetts Department of Industrial Accidents and was 
abandoned by both family and friends. Even though Fiola was ultimately 
acquitted, he never got his job back, and many of his relationships remain 
strained (PCWorld, 2008). 

Many authors have discussed cases where the Trojan defense played a 
prominent role, outlining outcomes, various legal loopholes, and how justice 
can somehow be guaranteed in spite of the added complications associated 
with this defensive strategy. One of the seminal reports in this area was 
drafted by Susan W. Brenner and her colleagues (Brenner et al., 2004). 
The report discusses the Trojan horse defense cases of Aaron Caffrey, Julian 
Green, Karl Schofield, and Eugene Pitts in detail, and highlights the steps 
the prosecution could take to verify if the defendant is guilty. This report is 
almost invariably cited whenever the Trojan horse defense is discussed. Ac-
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cording to the authors, in case of a Trojan defense, there are several possible 
ways that the prosecution could proceed. First, the prosecution might insist 
that since “malware did it,” the defense should produce evidence that mal-
ware is present and was installed by someone else without the defendant’s 
knowledge. For reasons we will discuss later in the paper, our position is 
that while this may have been possible in the past, modern malware can be 
extremely difficult to detect; detection likely requires substantial technical 
skill and the use of forensic procedures not commonly used by law enforce-
ment. Furthermore, transient, memory-only malware may leave no trace at 
all, making the production of evidence of the malware’s existence virtually 
impossible. Another tactic that is proposed for use by the prosecution is 
to establish the level of computer expertise of the defendant and find out 
if they possessed enough technical expertise to avoid becoming a victim of 
malware. As we will discuss later in this chapter, the bar for self-protection 
is spectacularly high when sophisticated modern malware is concerned. Fi-
nally, the assertion in the Brenner paper that law enforcement can “negate 
the factual basis of the defense” by establishing that no malware is present 
must go far beyond the use of traditional forensics techniques and antivirus 
scans. 

Though there are many theories as to how prosecutors could deal with 
the defendants in a Trojan defense case, things may not be so simple in 
practice. Each case is different, and there are no straight-forward, gen-
eral recommendations for how to handle any particular case. Furthermore, 
forensic investigations can go terribly wrong, allowing malware to go un-
detected. In Julie Amero’s case, she was charged with showing indecent 
materials to twelve-year-old kids during a class. While she was teaching, 
her computer started showing indecent pictures downloaded by NewDotNet 
spyware. Amero panicked and went to seek help while the pictures kept 
showing. Though the spyware was responsible for the crime, it took years 
for Amero to get justice. Part of the reason for her delayed justice is that 
the digital forensic investigation was not carried out properly. Her hard 
drive was imaged using the backup utility Ghost, which is not considered 
standard for disk imaging (Eckelberry et al., 2007). Although Ghost can 
be configured to perform sector-level copies of hard drives, default options 
must be overridden to avoid capturing only logical volume copies in at least 
some versions. In cases of negligence on the part of the investigator, or 
in the presence of highly sophisticated malware, investigations could easily 
fall short. Therefore, the presence of computer forensic experts as well as 
appropriate tools and techniques for forensic investigation of Trojan horse 
defense cases are extremely valuable. 
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Paul H. Luehr elaborates on where and how forensic investigators can 
find relevant evidence in cases involving digital systems. Luehr points out 
places such as start-up configuration files, internet browsing histories, and 
other places where evidence impacting a Trojan defense case might be found 
(Luehr, 2005). Haagman and Ghavalas mention the importance of volatile 
and network evidence in cases of cybercrimes involving a Trojan defense 
(Haagman and Ghavalas, 2005). The second part of the paper describes 
how these techniques can be used to analyze the presence of a backdoor 
(Ghavalas and Philips, 2005). 

In the past 10 years, the effectiveness of the Trojan defense has varied 
significantly. It has not been particularly successful in United States criminal 
cases, with no published acquittals in cases where it was the primary defense. 
On the civil side, the defense has met with more success (Steel, 2014). 
Bowles and Hernandez-Castro have published several case studies where 
the defendant was able to prove that malware was present without their 
knowledge (Bowles and Hernandez-Castro, 2015). No matter the outcome, 
however, thorough forensic investigations involving sophisticated tools and 
techniques were required. 

3. Traditional Digital Forensics Investigation 

Digital forensics is the branch of forensic sciences that deals with the 
acquisition, analysis, extraction, preservation, and presentation of digital 
evidence (Carrier, 2003). The field is defined by sets of procedures, tools, 
and techniques for preserving and analyzing digital evidence recovered from 
a wide variety of digital devices. While the associated legal requirements 
governing issues such as right-to-investigate, chain of custody, qualifications 
for expert witnesses, and admissibility of evidence are important, we fo-
cus solely on some relevant technical issues associated with acquisition and 
analysis in this section. 

3.1. Traditional Acquisition 

In traditional digital forensics, acquisition and recovery of data specifi-
cally targets non-volatile storage, such as hard drives. The primary objec-
tive is to extract copies of storage media where the copies are as close to 
“bit-perfect” as possible. For fully functional media in computer systems or 
devices that have been powered down, bit-perfect copies can be generated 
fairly easily using one of a variety of methods, such as the use of open-source 
utilities like dd, commercial software like FTK Imager (AccessData, 2019), 
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and hardware media duplicators. The use of write-blocking hardware is gen-
erally recommended to avoid accidentally corrupting evidence sources during 
the acquisition phase. This type of acquisition is commonly known as “full 
disk forensics,” wherein entire copies of hard drives are created in a digital 
forensics lab, or sometimes, at a crime scene. As new storage devices, such 
as thumb drives, external hard drives, and SD cards, have become widely 
used, the same approach to creating exact copies of entire storage media 
has prevailed using these traditional techniques. Typically, both the orig-
inal media and the copies of the media to be analyzed are run through a 
cryptographic hashing process (traditionally, MD5 or SHA-1, but now, more 
likely a newer standard like SHA-256 or SHA-3) that yields an associated 
digital fingerprint. This fingerprint can be used to establish that the media 
and copies remain unaltered by subsequent investigative processes. 

A standard procedure in performing acquisition of this type is the use 
of “dead box forensics.” Upon entering a potential crime scene, all of the 
digital devices are powered off to prevent further changes to file systems and 
storage media. Depending on the type of device, either the entire device is 
subsequently transported to a forensics lab, or in some extenuating circum-
stances, just the non-volatile storage media. This “power off and then copy” 
approach necessarily destroys volatile evidence that is present only in RAM. 
The volatile evidence that is lost may include memory-resident malware, 
unsaved documents, and much more. It is very reasonable to expect that 
some of this evidence may be exculpatory. We emphasize that this volatile 
evidence is precisely the domain of memory forensics, which is covered in 
detail in Section 5. 

Beyond the loss of volatile evidence, there are several technical hurdles 
that must be overcome during traditional acquisition. The first is how imag-
ing of malfunctioning media might be carried out. Hard drives and other 
media that have been damaged due to physical abuse or normal wear and 
tear frequently exhibit errors during the copying process. Depending on the 
severity of the errors, various remedies may be required, from simply ignor-
ing “bad” regions of the media and substituting zeros in the copy to attempts 
to physically repair the media, or use of sophisticated “deep” imaging pro-
vided by devices such as Deepspar’s PC-3000 (DEEPSPAR Data Recovery 
Systems, 2019), which attempt to maximize data recoverable from damaged 
drives by reading sectors in different orders, powering the drive up and down, 
and more. In many cases, these repairs are very effective; with minimal ef-
fort, storage devices can be revived. The authors have direct experience 
with cases in which opposing counsel in a civil case asserted that damaged 
media was completely unusable, but with simple replacement of electronic 
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components, all of the stored data could be recovered. Importantly, the data 
on the damaged storage device had a crucial impact on the outcome of the 
case. 

Nowadays, an even more serious hurdle commonly encountered in the 
acquisition phase of an investigation is related to the increasing size of mod-
ern storage media, which long ago passed a critical point. When hard 
drives and other storage media were significantly smaller (e.g., no larger 
than 10s of gigabytes), full acquisition was both feasible and relatively time-
efficient. With single commodity hard drives now exceeding 15TB, inexpen-
sive network-attached storage devices allowing users to easily create drive 
arrays with 100s of TBs of storage, and individual drives up to 100TB on 
the horizon, making bit-perfect, full copies of media can be extremely time-
consuming and in many cases infeasible. Acquisition strategies that copy 
only “relevant” portions of storage media in lieu of complete copies have been 
proposed (Grier and Richard, 2015), but particular care must be taken if 
these selective approaches are used to generate primary copies of storage 
devices, or critical exculpatory evidence could easily be missed. 

3.2. Traditional Analysis 

Once a forensically sound copy of a storage medium has been made, 
forensic analysis can begin. A typical digital forensics investigation involves 
a number of steps, most of which are generally carried out in a commercial 
forensics suite, such as those offered by AccessData (AccessData, 2019), 
Blackbag (Blackbag Technologies, 2019), or OpenText Security (Open-
Text Security, 2019), potentially supplemented with additional standalone 
tools to handle data like email or databases. The investigative steps include 
indexing of the storage media under investigation to allow for fast keyword 
searches of documents and unallocated space; file carving to recover deleted 
files (Richard and Roussev, 2005); timelining to determine when specific 
files were accessed or modified; scrutiny of the Windows registry (when 
computers running Microsoft Windows are being investigated) for evidence 
that external storage devices were recently used and which documents were 
recently accessed (Carvey, 2019); investigation of web browsing history; and 
more. These forensics procedures are quite adept at revealing incriminating 
evidence (e.g., downloaded child porn or other illicit materials, web surf-
ing activity) without necessarily establishing that a user performed these 
actions. 

Of particular importance is the investigation of persistence mechanisms 
used by malware, such as modification of the Windows registry Run keys. 
Various Run keys specify the applications that run each time Windows is 
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booted, for each user and for all users. Since this facility is well-known, mal-
ware that persists using this technique frequently uses an application name 
that closely matches commonly installed benign applications. Fortunately, 
scrutiny of the Run keys at the very least reveals applications that are de-
serving of further investigation. The authors have personal experience with 
a case in which an employee that was the victim of targeted malware was ul-
timately not terminated based solely on the discovery of the malware via its 
use of Windows registry Run keys for persistence and a subsequent complex 
reverse engineering effort. All of the other evidence pointed squarely at the 
employee accessing NSFW materials in the workplace, which was grounds 
for termination. Importantly, the malware sample that was discovered was 
not detected by antivirus. Screening of the sample using the Virus Total 
website revealed that virtually all antivirus products flagged the sample as 
benign, while the few that marked it as suspicious inaccurately described 
its behavior (e.g., as a banking trojan). Only a detailed reverse engineer-
ing effort revealed that the malware surreptitiously accessed pornographic 
websites “on behalf of” the innocent employee. While a full treatment of 
persistence mechanisms is beyond the scope of this chapter, a good treat-
ment for Windows can be found in (Fortuna, 2017). 

Unfortunately, a huge number of persistence mechanisms exist. Most are 
neither as obvious nor as well-documented as the use of Run keys. Worse, 
modern memory-only malware may not use any persistence mechanisms at 
all. Our contention is that while traditional digital forensics techniques are 
both useful and essential, they miss a significant portion of the narrative 
surrounding a potential violation of law or policy involving digital devices. 

4. Modern Malware and the Trojan Defense 

Malware is software that performs unwanted or illicit activities on dig-
ital devices. Both the installation of malware and the actions performed 
by malware are generally without user consent. Over the years, malware 
has evolved from simple viruses designed as “pranks” to drivers for launch-
ing targeted and specialized attacks against individuals, corporations, and 
cyberinfrastructure. Modern malware is used on a massive scale by cyber-
criminals using sophisticated capabilities that can target user and corporate 
data, industrial control systems, equipment used for national defense, and 
more. These new malware attacks are explicitly designed to violate the 
security of a target system by breaching confidentiality, violating data and 
system integrity, and hiding their actions. The actions performed by modern 
malware include virtually anything a user might do, as well as sophisticated 
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data infiltration and exfiltration, and attacks against other computer sys-
tems. 

Broadly, malware is categorized by its mode of propagation; specifically, 
as viruses, worms, and trojans. We explore these briefly, although specific 
malware samples often exhibit behavior that spans more than one category: 

• Viruses are malicious software that are self-propagating but not self-
contained, meaning they require a host program to exist. However, 
they can move from one system to another by infecting programs that 
are subsequently copied to another machine. Viruses are the oldest 
form of malware that are specifically designed to inject themselves 
into an existing program by modifying the target binary to include 
the malicious code. 

• Worms are malware that are both self-contained and self-propagating. 
This means that worms exist as independent pieces of code that do not 
require a host to exist. Usually, worms propagate to a target machine 
over a network. 

• Trojans typically possess both an overt and covert functionality. Often 
propagated via a drive-by download or via social engineering tricks, 
this category of malware might be installed on user systems as le-
gitimate applications, but unbeknownst to the user, they also have 
built-in malicious functionality. 

Malware can also be classified by their payload or malicious behaviors. 
Some of these classifications include: 

• Ransomware encrypts user files in exchange for ransom, which is typ-
ically paid using cryptocurrency. 

• Keystroke loggers surreptitiously capture what a user types at the 
keyboard, including login credentials and other private data. 

• Spyware logs and exfiltrates information about user activities, video, 
audio, etc. 

• Botnets are large groups of infected machines that can be used for 
distributed attacks, such as mass spam campaigns and denial of service 
attacks. 

• Rootkits modify the system configuration and potentially the operating 
system to hide its presence and ensure that attackers have continued 
access to a system. 
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According to PandaLabs, an average of 230,000 new malware samples 
were produced daily in 2015, and AV-TEST Institute has reported more 
than a 20-fold increase in registered malware from 2010 to 2019 (AV-Test, 
2019). The development and dissemination of malicious software has become 
a lucrative, international business with cybercriminals providing malware-
as-a-service via the leasing of both software and hardware needed to execute 
a cyberattack (Laing, 2018). A number of mechanisms are used to install 
malware on user systems, including email attachments, social engineering, 
drive-by downloads, vulnerable websites, and more. Modern malware is no-
torious for installing backdoor programs, spying on user behavior, perform-
ing ransomware attacks, mining cryptocurrency, downloading illicit materi-
als, and more. As one example, the Emotet Trojan leverages vulnerable web 
services to steal financial data, inject a victim’s machine with an exploit, 
and download additional malware to serve as spyware and/or as a backdoor 
(Malwarebytes Labs, 2019), all without the user’s knowledge. On mobile 
devices, malware has become a critical problem. According to the annual 
Internet Security Threat Report (ISTR) in 2018, the number of new mobile 
malware variants has increased by 54% (Symantec, 2018). Android malware 
such as Cerberus (Doffman, 2019) leverages fake websites and masquerades 
as a legitimate Adobe Flash Player installation. Upon installation, the mal-
ware tricks the user into granting very dangerous permissions, which then 
gives the attacker access to the device’s screen when other legitimate apps 
are running. With this capability, the malware can steal user keystrokes and 
sensitive data, such as login credentials and contact information. 

4.1. Malware Obfuscation 

Anti-virus software is often used to detect malware and prevent new 
infections. This typically relies on signature-based detection of known mal-
ware variants. While anti-virus software is quite effective at detecting these, 
it frequently fails to detect new ones, particularly targeted malware and 
those that exhibit advanced obfuscation techniques, such as polymorphism, 
metamorphism, code and data encryption, kernel manipulation, and most 
worrisome, memory-only activity. In the case of a new malware, anti-virus 
software employs heuristic-based approaches to determine known malicious 
traits (Microsoft, 2011). 

Before malware samples can be analyzed, the malware must first be 
detected and an appropriate sample isolated for further scrutiny. This is 
the single most pressing issue in validating or invalidating a Trojan defense 
claim in a case where modern malware could be involved. 
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On traditional computers, advanced malware, such as kernel-level rootk-
its, can evade most forms of detection used in traditional malware forensics 
investigations. Given their power over a system, rootkits can directly choose 
what data is written to disk and how it is written to disk. Rootkits leverage 
the power to write as little of its related data to disk as possible and usually 
choose to encrypt or obfuscate this data. Another category of highly ob-
fuscated malware are fileless malware. These do not create new executable 
files on disk, but instead embed malicious scripts inside existing files, such 
as shortcut files or within the registry (Armerding, 2013; Majumder, 2019). 
Detection of fileless malware requires new detection algorithms as there are 
no traditional executables to scan and analyze. Instead, anti-virus and other 
security products must implement completely new features to scan the new 
sources of malicious code. A recent and prominent example of a fileless mal-
ware attack was the hack on the Democratic National Convention (DNC), 
which leveraged a Powershell backdoor with a persistence mechanism in-
jected into the Windows Management Instrumentation (Alperovitch, 2016). 
For traditional computers, the most dangerous form of malware is memory-
only malware, which does not persist past reboot nor write any data to 
non-volatile storage. Detection of such malware requires the use of memory 
forensics since traditional forensics techniques will completely miss all re-
lated artifacts. Duqu2 (Kaspersky Research Team, 2015) is one of the most 
famous malware samples to employ these techniques. 

On mobile platforms, other specialized programming practices such as 
Java reflection and the use of dynamic class loading are becoming stan-
dard techniques for mobile malware obfuscation. These techniques can help 
malware thwart analysis and obfuscate its payload at installation. One 
of the latest Android malware samples, called “Joker,” was detected in 
September 2019 on the GooglePlay store after more than 400,000 downloads 
(O’Donnell, 2019). It has both Trojan and spyware capabilities and employs 
dynamic class loading to install an extra component with more enhanced 
features capable of subscribing to premium SMS, information stealing, etc. 

Given these advanced obfuscation and hiding mechanisms, it is appar-
ent that traditional on-disk malware forensics is under threat as the primary 
technique for postmortem investigations of cybercrime, especially when stealthy 
malicious software is involved. We briefly discuss malware analysis in the 
next section. Evaluating a Trojan defense claim requires accurately deter-
mining what actions the malware can perform. Without better detection 
strategies, incorrect decisions regarding Trojan defense claims may be in-
evitable. 
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4.2. Malware Analysis 

As malware becomes more sophisticated, there is an increasing need to 
understand not only the malware’s actions at the time of execution, but its 
provenance, persistence, dynamic injection methods, and both internal and 
external remote communications. Thus, to understand the causality as well 
as the functionality of a cyberattack in its entirety, especially those involving 
malware, the security community has adopted a postmortem investigative 
process called malware forensics. This technique involves examining mal-
ware code and its effects to identify how an attack happened, what data and 
resources were compromised, and what actions were executed (Malin et al., 
2008). When malware is identified in a case, it is imperative to understand 
precisely what actions can be attributed to the malware vs. a human user. 

Once a malware sample is available, there are two primary approaches: 
static analysis and dynamic analysis, although these are frequently used to-
gether for additional insight. With static analysis, a malware sample’s code 
is examined for any malicious functionality, often using predetermined sig-
natures, patterns, code sequences, semantics, and strings. Static analysis 
can often be a fast and efficient technique, particularly to understand vari-
ants of known malware. Unfortunately, deep static analysis often requires 
specialized reverse engineering skills and extensive experience, which are in 
short supply. 

Dynamic analysis on the other hand, involves executing a sample in a 
contained environment and then monitoring its behavior at runtime. With 
this technique, unwanted or illicit behavior can often be detected and un-
derstood much more quickly than via an in-depth static analysis effort. Ex-
pert knowledge is typically required in building the execution and analy-
sis environment, although some systems like Cuckoo (Cuckoo Foundation, 
2019) ease this burden. While dynamic analysis methodologies such as taint-
analysis (Schwartz et al., 2010) perform an excellent job in program tracing, 
drawbacks include significant resource overhead, contamination of the anal-
ysis environment with analyst code, and limited path exploration. Specifi-
cally, dynamic analysis may not reveal “hidden” malware behaviors, which 
are triggered only by certain user actions or the passage of time. In this 
regard, static analysis is superior. 

While online services that evaluate malware samples by running antivirus 
products against them and reporting the results are useful in judging the 
accuracy of antivirus products, this practice does not constitute “malware 
analysis” and should not be used for evaluating a Trojan defense claim. 
In our direct, personal experience, antivirus software is frequently woefully 
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inaccurate in either detecting or categorizing new malware samples. Some-
times antivirus simply fails to detect malware at all, and sometimes the 
malware is identified as a variant of existing malware with which it actually 
has no relationship at all. 

Of course, analysis procedures to get to the bottom of whatever actions 
a malware sample might perform are useless if the malware isn’t detected 
in the first place. Memory forensics offers both better detection and under-
standing of sophisticated malware. 

5. Memory Forensics vs The Trojan Horse Defense 

Memory forensics encompasses the set of techniques to first acquire and 
then analyze a sample, or snapshot, of physical memory at a particular 
moment in time. The dawn of memory forensics began when malware au-
thors realized that through anti-forensics techniques they were able to bypass 
many or all of the traditional forensics analysis procedures. For example, 
security researchers documented that, contrary to popular belief, an appli-
cation does not ever have to be written to disk to be executed. Publicly 
available research papers document memory-only execution of applications 
and libraries as far back as 2004 (Skape and Turkulainen, 2004; grugq, 
2004). These techniques are now commonplace and implemented in popu-
lar open-source offensive security projects, such as Meterpreter (Wadner, 
2014) and PowerShell Empire (Schroeder, 2019), as well as a wide variety 
of malware used during real attack campaigns. 

Besides hiding executables in memory, malware can also be programmed 
to hide the rest of its presence on the live system. This can be accomplished 
via a technique known as API hooking, which allows malware to filter the 
types of information viewed and accessible by end users of the system, as 
well as other software running on the system. Common hiding techniques on 
Windows systems include hiding the malware’s processes from Task Man-
ager, files from Explorer, and network connections from netstat. Other tools 
to investigate system resources will similarly be affected by the hooking, and 
the malware will be hidden from them also. We note that the ability to run 
executables that reside only in memory and to hook APIs is widely abused 
on all major platforms, including Linux and Mac, and not just on Windows. 

Beyond malware, other types of applications have similarly worked to 
avoid traditional digital forensics. The most prominent examples are appli-
cations that implement a “private” usage model, such as private browsing 
modes that do not log browsing history or cookies to disk, and chat applica-
tions that use end-to-end encryption on the network and do not keep local 
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records of chat history. These efforts to specifically circumvent traditional 
forensics analysis have contributed to an increased awareness of the rising 
need for memory forensics and demands for ongoing advances in this field. 

5.1. Techniques for Acquiring Memory 

There are two categories of techniques for acquiring memory: software-
based acquisition and hardware-based acquisition. Hardware-based acquisi-
tion was initially popular due to the fact that widely-accessible protocols, 
such as Firewire and PCMCIA, allowed direct access to physical memory by 
attaching hardware devices and using DMA. Specialized hardware devices 
take advantage of these protocols to acquire memory from systems after 
being attached. Hardware-based acquisition bypasses the need to log into 
systems, which requires valid credentials, or to load custom software. While 
initially popular, hardware-based acquisition is now less commonly used due 
to the inability of pervasive technologies such as USB devices to access all 
of physical memory, as well as operating system protections against DMA-
based attacks. For example, Mac OS X systems prevent attached devices 
from performing DMA operations while the system is locked. Only after 
valid credentials are entered do the devices gain access. The requirement 
of valid credentials substantially reduces the power and scope of hardware-
based mechanisms. Now, the use of software-based mechanisms is much 
more common. 

Software-based acquisition utilizes kernel-level code to access all of phys-
ical memory. The memory contents are typically written to the file system 
of an external storage device or delivered securely over a network connec-
tion to a remote machine. Software-based acquisition has an advantage over 
hardware-based solutions in that it can successfully acquire memory from 
a variety of operating systems and hardware configurations, as it does not 
rely on specific hardware protocols being present or active. While widely 
supported, software-based acquisition does have two main drawbacks. First, 
to load a kernel driver, valid administrator credentials are required. This is 
generally not an issue in enterprise networks where the IT team manages 
user accounts, but is a major stumbling point in law enforcement operations 
when the suspect may not be legally required to reveal their credentials, or 
the operation is supposed to be covert and the suspect not alerted. Second, 
malware running on the system at the time of acquisition has the potential 
to interfere with the acquisition process. This capability has been demon-
strated in many research projects and several malware samples found in the 
wild have implemented interference techniques. Fortunately, most attempts 
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to interfere with the acquisition process are rather obvious, such as com-
pletely blocking acquisition when it would otherwise work, or tampering 
with in-memory data in a way that produces easy-to-detect discrepancies 
during analysis. 

5.2. Analyzing Memory Samples 

After a valid memory capture is made, the sample is then analyzed in 
a forensic lab using appropriate software. Relative to the Trojan horse de-
fense, analysis of a memory sample provides numerous benefits, including 
the ability to detect stealthy malware, uncover precise user actions not ac-
cessible by traditional analysis techniques, and help prove intent, or lack 
thereof, on the part of the person under investigation. 

5.2.1. Memory Forensics and Modern Malware 
The true power of memory forensics is illuminated when applied to the 

investigation of modern malware. Since memory forensics provides the abil-
ity to examine the entirety of the state of a system, there is little room 
for malware to hide or act in a covert manner. This presents a significant 
advantage to the investigator as they can operate with increased confidence 
that any malware that is present will be found. In the case of memory-only 
malware, which is essentially invisible to traditional forensics techniques, 
memory forensics can provide three distinct benefits. First, it can detect 
that something is “off,” based on the fact that active code and data struc-
tures in memory are not associated with a file on disk. This is not a situation 
that occurs using legitimate application development practices. Second, be-
sides simply detecting that something malicious in on the system, tools 
can pinpoint precisely where the malicious code is active in memory and 
then automatically extract it for further scrutiny. This allows retrieval of 
code and data that was never actually written to the file system of the ma-
chine under investigation. Third, data that malware hides from live and 
traditional forensics methods, such as running processes and open network 
connections, are fully visible to memory forensics tools. Leveraging these 
benefits, memory forensics provides not only the ability to detect malware, 
but also mechanisms for deep understanding of malware behavior. 

Volatility (Volatility Foundation, 2017) is the most widely used and 
powerful framework for memory forensics, containing an entire suite of anal-
ysis plugins dedicated to the GUI subsystem of Windows (Ligh, 2012a,b). 
This subsystem powers all interactions the end user has with the keyboard, 
mouse, monitor, and other devices. For malware to fake user keystrokes, 
such as typing in the URL of an illegal website, this subsystem must be 
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used. To detect such behavior, Volatility has several analysis plugins that 
specifically look for code performing such actions. In situations where these 
plugins report active code, that code must then be investigated to deter-
mine its precise actions and reasons for controlling hardware devices. In 
some cases, actions such as the implementation of hot keys or custom mouse 
controls turn out to be legitimate, but in other cases, this analysis ends up 
pointing directly to the malware responsible for framing an innocent party. 

Another type of analysis concerns malware programmed to contact a 
list of illegal websites from a victim’s computer. When assessing whether 
the websites were accessed intentionally by the user or programmatically 
by malware, the list of accessed URLs can often be extracted from the ac-
quired sample. This can potentially reveal many details to the investigator, 
including which applications were referencing the URLs; which files, if any, 
contained the URLs; and the context of the URL within applications, such 
as them appearing inside an advertisement shown in a browser, or in the 
copy/paste buffer on the user’s system. By analyzing the full context of il-
legally accessed material, the investigator can build a strong and defensible 
case about the guilt or innocence of the person under investigation. 

5.2.2. Anti-Forensics Applications 
Investigating computer systems where anti-forensics techniques are in 

place can be extremely difficult. The purpose of anti-forensics tools is to 
either erase or scramble the digital artifacts investigators rely on to per-
form their work. In cases where the Trojan defense is employed, the use 
of anti-forensics can and does remove the exact artifacts relied upon during 
traditional analysis to tie activity back to either the end user or malware. 
Fortunately, memory forensics is not as easily affected by anti-forensics tech-
niques. Even artifacts that have been mangled on disk can still be recover-
able in memory. A common example of this is when a user securely deletes 
a file from disk using a third party wiping utility. For the subset of utilities 
that implements secure deletion properly, the file is truly gone and unre-
coverable from non-volatile storage after the wiping operation completes. 
Using memory forensics techniques can circumvent such deletion, however, 
as remnants, or even a complete copy, of the file may remain in memory. 

5.2.3. “Private” Applications 
As mentioned previously, web browsers, chat programs, and other com-

mon applications routinely implement private usage modes. The purpose of 
these operational modes is to ensure that passive monitoring of an appli-
cation’s network traffic, as well as traditional forensic investigation of the 

18 



system’s hard drive, reveals little to no detail of the activity that occurred. 
This is problematic for all sides in a legal investigation. The lack of on-disk 
browser history can make it difficult for the investigator to tie visiting spe-
cific websites to the user, and inversely, difficult for the user to show that 
they did not visit those websites. 

As with malware and anti-forensics applications, memory forensics can 
still recover most or all of the activity that occurred in these private usage 
modes. This is possible because all of the activity that happens in the appli-
cations - typing text, viewing pictures, sending and receiving chat messages, 
browsing web pages, choosing file names, and more - all leave traces in mem-
ory. In the case of end-to-end encrypted chats, which are only visible to the 
actual participants in the chat, entire plaintext copies of conversations will 
be left in memory. This occurs because memory buffers that are created 
after decryption to display the plaintext data in the chat window remain in 
memory. 

Browsers suffer a similar fate under the scrutiny of memory forensics 
techniques, even for data that was sent and received using HTTPS. Again, 
for the browser to display a page’s content in a readable form, the decrypted 
network traffic must be stored in memory. Similarly, before an encrypted 
request is made by the browser, the plaintext data must first be stored 
in memory for encryption. The data generated by applications, such as 
browsers and chat programs, often stays in memory long after the application 
is closed. 

Many forensic tools exploit the gap between what traditional forensic 
analysis can uncover versus what memory forensics can uncover. Bulk Ex-
tractor (Garfinkel, 2013) is one of the most widely used, analyzing every 
byte of a memory capture to look for data, including URLs, emails, DNS 
lookups, social media usage, web searches, and other artifacts. By simply 
running Bulk Extractor against a memory sample, investigators can uncover 
a wealth of forensic data that may be inaccessible to traditional digital foren-
sics. 

5.2.4. Encrypted Stores 
The use of encryption is now widespread, even for novice users. Main-

stream operating systems provide full disk or partition encryption by default 
and this is now the expectation when configuring a new computer. Windows, 
Linux, and Mac all also natively support creation of encrypted containers. 
These containers are stored as a single file on disk, but then internally have 
an encrypted file system. The use of containers is very attractive as they can 
easily be moved to different devices using email, removable storage devices, 
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or cloud storage. They are also useful in that a user’s sensitive files can 
be enveloped by an extra layer of protection beyond full disk encryption. 
Of course, criminals are well aware of these encrypted containers and use 
them to store information they would prefer law enforcement and digital 
investigators not to find. 

When a system is examined, investigators will often use forensic soft-
ware that is designed to find encrypted containers. Finding the containers 
is only the first step, however; the credentials to unlock them must be ob-
tained. In countries where users do not have to divulge their credentials to 
law enforcement, this can immediately derail an investigation. Fortunately, 
memory forensics can be used to gain access to encrypted containers in cases 
where the credentials are unknown. By focusing on keystrokes, such as the 
user typing in their password(s), as well as the contents of open files, includ-
ing text files of passwords or a password manager’s database, tools can still 
access protected information in memory. This might allow an investigator 
to build a password-cracking dictionary that is closely tailored to the user 
under investigation. In many cases where encrypted containers are present, 
the use of a memory sample to crack the container is the difference between 
a guilty person going to jail or walking free. 

6. Conclusion 

This chapter has considered the Trojan horse defense and whether tra-
ditional forensics techniques are sufficient to definitively detect cutting-edge 
malware and disentangle the actions of legitimate users from those covertly 
executed by malware. In general, the answer is no. Modern malware is often 
weaponized, extremely stealthy, and in many documented cases, leaves no 
trace on non-volatile storage. Furthermore, modern malware can secretly 
perform virtually any action a user might perform on a computer system, 
including actions that place human users in serious legal jeopardy, such 
as launching attacks against other systems or downloading illicit materials. 
Traditional approaches to detecting malware that might impact a legal case 
include executing antivirus software and using “pull the plug” forensic tech-
niques that target only non-volatile storage devices. Unfortunately, in many 
cases when investigators restrict themselves to these techniques, they will be 
completely unable to detect malware, much less establish whether malware 
played a substantial role. When malware is in fact responsible for illegal 
actions, this choice of tools tips the scales heavily against innocent parties. 

Memory forensics is already widely adopted in digital forensic and inci-
dent response teams in both the private and the public sphere, as it often 
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provides the sole viable solution for detecting and understanding modern 
malware, especially strains that are memory-only or file-less. Organizations 
have rushed to train their investigative teams in how to use memory foren-
sics and put processes in place to increase the likelihood of success in real 
investigations. While the use of memory forensics tools currently require 
substantial expertise, improving their reliability and usability is an area of 
active research. Unfortunately, the use of memory forensics is not particu-
larly widespread in the law enforcement community, especially in smaller, 
local organizations and departments. Given the power of memory forensics 
to provide investigators with viable tools for properly detecting and ana-
lyzing modern malware, memory forensics simply must become part of the 
modern digital forensics toolkit used by law enforcement. 
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