
BioMed CentralBMC Evolutionary Biology

ss
Open AcceResearch article
No variation and low synonymous substitution rates in coral 
mtDNA despite high nuclear variation
Michael E Hellberg*

Address: Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

Email: Michael E Hellberg* - mhellbe@lsu.edu

* Corresponding author    

Abstract
Background: The mitochondrial DNA (mtDNA) of most animals evolves more rapidly than
nuclear DNA, and often shows higher levels of intraspecific polymorphism and population
subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin), by contrast, appears to
evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this
slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear
variation or calibrated rates of synonymous substitution that could permit quantitative rate
comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from
a coral species (Balanophyllia elegans) known to possess high levels of nuclear gene variation, and
estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea
coccinea).

Results: The mtDNA surveyed (630 bp of cytochrome oxidase subunit I) was invariant among
individuals sampled from 18 populations spanning 3000 km of the range of B. elegans, despite high
levels of variation and population subdivision for allozymes over these same populations. The
synonymous substitution rate between B. elegans and T. coccinea (0.05%/site/106 years) is similar to
that in most plants, but 50–100 times lower than rates typical for most animals. In addition, while
substitutions to mtDNA in most animals exhibit a strong bias toward transitions, mtDNA from
these corals does not.

Conclusion: Slow rates of mitochondrial nucleotide substitution result in low levels of
intraspecific mtDNA variation in corals, even when nuclear loci vary. Slow mtDNA evolution
appears to be the basal condition among eukaryotes. mtDNA substitution rates switch from slow
to fast abruptly and unidirectionally. This switch may stem from the loss of just one or a few
mitochondrion-specific DNA repair or replication genes.

Background
Rates of nucleotide substitution for mitochondrial DNA
(mtDNA) are several times higher than those for nuclear
DNA (nDNA) for most animals. Several reasons for this
difference in rates have been proposed. Because mtDNA is
haploid and usually maternally inherited, the effective

population size of mitochondrial genes is one quarter that
for nuclear genes, which should speed neutral divergence
[1]. Unlike nDNA, mitochondria lack histones, which
leaves them exposed to mutagens. Furthermore, because
mitochondria are centers of oxidative metabolism,
mtDNA faces more of the free radicals responsible for
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many mutations than does nDNA [2]. As a result,
intraspecific variation for mtDNA may exceed that for
nDNA [3]. This variation is often partitioned among pop-
ulations, such that surveys of mtDNA may reveal popula-
tion subdivision when other markers such as allozymes
do not [4-7].

Yet not all mtDNA evolves rapidly. Rates of nucleotide
substitution are slow in the mtDNA of plants, both in
absolute terms and relative to nDNA [8]. Rates of mtDNA
substitution appear to be slow in some basal animals as
well, including sponges [9,10] and anthozoans (corals,
anemones, and their kin, [11-15]). This is especially sur-
prising for corals. Corals and other anthozoans do not
sequester their germ cells [16], yet single coral colonies
may live many hundreds of years [17]. All else being
equal, this combination of a nonsequestered germline
and great longevity should lead to high rates of mitochon-
drial mutation, as any mutations accumulated over a long
life could be passed on to offspring.

Contrary to this expectation, mtDNA divergence among
closely related anthozoans is low [14,18,19], in fact lower
than that for nDNA from the same taxa [20,21]. Among
the few intraspecific studies to survey mitochondrial vari-
ation from many (>20) individuals, most have focused on
non-coding regions [22] or rRNA genes [23]. Variation in
these regions has generally been less than or equal to that
for nuclear genes [24,25].

Such non-coding substitution rates are difficult to com-
pare across taxa due to the effects of variation in evolu-
tionary constraints on substitution rates and to difficulties
in aligning homologous sites. Synonymous (silent) sub-
stitutions within coding regions, however, can often be
aligned unambiguously among distant taxa. Synonymous
sites show low variation in rates among different loci in
the same genome [26], consistent with their neutral evo-
lution. To date, surveys of mitochondrial coding regions
in corals [25,27,28] have found little or no variation, but
these studies have included just a few individuals (≤ 8)

and a few localities (≤ 3), and have not been accompanied
by surveys of variation at single-copy nuclear markers.

Here, I survey intraspecific variation and estimate the
interspecific divergence rate for two species of coral, Bal-
anophyllia elegans and Tubastrea coccinea, using a widely
sequenced mitochondrial coding region from cytochrome
c oxidase subunit I (coxI). Allozyme surveys in B. elegans
have previously established that single copy nuclear mark-
ers are both variable and subdivided among populations
[29,30]. Divergence between the two species surveyed
allows me to calculate fossil-calibrated rates of synony-
mous substitution and to place these rates of mtDNA sub-
stitution in the phylogenetic context of synonymous rates
in other eukaryotic lineages

Results
coxI was invariant among all 67 B. elegans (GenBank
Accession DQ445805) sampled from 18 populations
spanning 3000 km of its geographic range, including 16
individuals from the site (Bodega Bay) that was most pol-
ymorphic for allozymes [29]. The seven T. coccinea sam-
ples from the Caribbean and the Eastern Pacific were
likewise identical at coxI (Accession DQ445806). Rate cal-
culations were based on this Caribbean/Eastern Pacific
consensus sequence. The five sequences from Hawaiian T.
coccinea were identical to each other, but differed from the
Caribbean/Eastern Pacific consensus sequence by a single
nonsynonymous substitution. Reading frames for all
sequences remain open for all of these sequences when
translated using the cnidarianmitochondrial genetic code
[31].

The fossil record indicates that Balanophyllia and Tubastrea
diverged at least 50 MY ago [32], yet raw coxI divergence
between B. elegans and T. coccinea is only 2.7%. The syn-
onymous substitution rate is 0.00055 substitutions per
site per MY (Table 1). This rate is the same as that for two
angiosperms (rice and maize) that diverged at about the
same time as Balanophyllia and Tubastrea [26]. For compar-
ison, diverse animal lineages sundered by the Isthmus of

Table 1: Rates of nucleotide substitution in protein-coding mtDNA from corals, plants, and bilateral animals.

Time of divergence (MY) KS/yra KA/yra

B. elegans vs. T. coccinea (corals, Anthozoa) 50 0.056 (0.020) 0.019 (0.006)
Rice vs. maize[26] (Angiosperms) 50 0.05 (0.01) 0.02 (0.00)
Tegula verrucosa vs. T. viridula[36,79] (topsnails; Lophotrochozoa) 3 5.7 (0.93) 0.033 (0.033)
Alpheus panamensis vs. A. formosusA[80] (snapping shrimp; Ecdysozoa) 3 8.6 (1.38) 0.0
Echinometra vanbrunti vs. E. lucunter[81] (sea urchins; invertebrate Deuterostoma) 3 8.1 (1.27) 0.036 (0.036)
Abudefduf saxatilis vs. A. troschelli[82] (damselfish; vertebrate Deuterostoma) 3 4.5 3 (0.36) -
Sphyrna tiburo tiburo vs. S. t. vespertina[33] (sharks; vertebrate Deuterostoma) 3 2.4 (0.41) 0.056 (0.033)

a Rates are in units of % substitutions per site per 106 years. KS, synonymous substitutions per synonymous site; KA, nonsynonymous substitutions 
per nonsynonymous site. All estimates for fragments of coxI except angiosperms (mean of several mitochondrial genes, including coxI) and Sphyrna 
(cytochrome b).
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Panama three MY ago show rates of synonymous substi-
tution roughly 100 times greater than for angiosperms
and corals (Table 1); even the notably slow mtDNA of
sharks [33] is 50 times faster. Nonsynonymous (amino
acid altering) substitution rates for corals and plants are
similar as well, but are only slightly slower than those
bilateral animals (Table 1).

Patterns of nucleotide substitution between the two corals
are also more similar to angiosperms [8] than to other ani-
mals. About half of coral mtDNA substitutions are trans-
versions (9/17). In contrast, the mtDNA of other animals
typically shows a strong transition bias [34,35]. For exam-
ple, the Tegula species in Table 1 show a 15-fold excess of
transitions compared to transversions between closely-
related species [36].

Discussion
Low levels of mitochondrial variation in corals
This study revealed little intraspecific variation within
either of two corals, Balanophyllia elegans or Tubastrea coc-
cinea. B. elegans was sampled over much (> 3000 km) of
its broad geographic range, where high levels of allozyme
variation have been found previously [29,30]. The single
substitution (a nonsynonymous one) observed within T.
coccinea mtDNA occurred between populations separated
by over 4000 km of uninhabitable ocean. Previous sur-
veys of genetic variation in coding regions of coral mtDNA
have found similar patterns: either no variation [27] or
very little variation restricted to nonsynonymous sites
[28].

Such low levels of genetic variation are not characteristic
of anthozoan nuclear genes. Indeed, a comparison of
allozyme polymorphism and heterozygosity found varia-
tion in cnidarians and sponges to be higher than those for
all other animals [37]. High allozyme heterozygosity in B.
elegans [29,30] shows it is no exception to this trend.
Intraspecific surveys of nDNA sequence variation from
coding regions are lacking for corals, but intron sequences
are quite variable [20,24,38], and microsatellites [39] and
AFLPs [25] have revealed both high heterozygosities and
population subdivision. While more extensive surveys of
nucleotide variation from coding nDNA are needed, low
variation appears to be restricted to the mitochondrial
genome of corals.

Relatively low levels of mtDNA variation can result from
range expansions, where the smaller effective population
size of mtDNA genes can enhances founder effects. This
may account for the lack of variation between Eastern
Pacific and Caribbean T. coccinea, if the latter were indeed
recently introduced as suggested by Cairns [40]. This does
not appear to be the case for B. elegans, however. Subdivi-
sion within this species [29] does not suggest any anthro-

pogenic range changes. Natural poleward range
expansions following climatic cooling events can homog-
enize the mtDNA of newly founded populations, but
more equatorial populations continue to harbor variation
[41]. Sampled populations of B. elegans include its south-
ern range limit, however, but still reveal no variation.
Selective sweeps can also homogenize mtDNA within spe-
cies. However, mtDNA regions are often identical among
different species, genera, and even families [21,42], a pat-
tern that would require very strong stabilizing selection to
maintain homogeneity (even at silent sites) over millions
of years. The most likely explanation of low levels of
mtDNA variation within coral species, then, is a low rate
of nucleotide substitution.

Slow rates of synonymous substitution in corals
A growing body of evidence suggests that the mtDNA of
anthozoans evolves slowly [11-15,19]. The very low diver-
gence found here for two genera with independent fossil
records extending back over 50 MY provides an estimate
of just how slowly: 0.055% per MY. This rate of synony-
mous substitution is 50–100 times slower than those
reported previously for an array of animals (Table 1),
including hydrozoans [43].

These low rates have practical consequences. First, the
dearth of variation in anthozoan mtDNA makes routine
phylogeographic surveys impossible. Alternative
approaches employing microsatellite variation have
revealed genetically isolated regions within coral species
[39], but primers for single-copy nuclear gene regions that
both amplify across diverse taxa and consistently reveal
variation within species remain to be developed. Second,
low variation means that mtDNA sequences cannot be
counted on to reveal differences between closely related
species. Indeed, the mtDNA region nominated for such
DNA barcoding [44] is the very same coxI used here.
Hebert et al. [45] stated previously that barcoding fails in
cnidarians due to low variation; Figure 1 suggests that this
limitation applies only to a subset of the Cnidaria, the
anthozoans. Still, low rates of coxI evolution in corals, sea
fans, and sponges mean that the very bricks and mortar of
tropical reefs are not amenable to barcoding diversity sur-
veys (although cox1 should still prove useful for resolving
deeper phylogenetic relationships, e.g. [21]).

Multiple losses of mtDNA repair function
As with corals, the available data for fungi [46] and
sponges [47] suggest that rates of synonymous substitu-
tion in mtDNA are slower than nDNA in these taxa. Taken
together with rates for plants and animals, these data sug-
gest that mtDNA evolves in two distinct modes: one slow
relative to nDNA and with little bias toward transitions,
the other fast relative to nDNA and often (but not always,
[48]) transition-biased (Figure 1). Phylogenetic analysis
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suggests that the switch from the slow mode to the fast
mode occurs abruptly (without any apparent intermedi-
ate state) and always in the direction toward the fast
mode. This switch has occurred at least four times: twice
in flowering plants (in geraniums and plantains, [49]),
and twice in animals (Figure 1).

One change in animals occurred within the phylum Cni-
daria between the basal Anthozoa [50,51] and the derived
Medusozoa (hydroids and jellyfish). The independently
derived fast mtDNA rates in the Medusozoa are similar to
those in bilateral animals. In fact, 16S divergence rates in
hydroids of the genus Hydractinia [52] are greater that of
their hermit crab hosts [53], with whom they have proba-
bly co-speciated [54]). Phylogenetic analyses reveal inter-
specific variation typical for most animals among recent
radiations of scyphozoans [55]. Scyphozoans also have
high levels of intraspecific variation [56,57] and show a
transition:transversion bias > 10:1 (e. g. Cassiopea coxI
data from [58]). A second switch from slow to fast mtDNA
occurred at the base of the Bilateria (which includes the
vertebrates); even flatworms show high intraspecific
mtDNA variation and a strong transition bias [59].

This qualitative switch in the mode of mtDNA evolution
is not a simple extension of the quantitative variation in
mtDNA rates noted previously [33]. Within vertebrates,
relative substitution rates in mtDNA and nDNA are corre-
lated within taxa, despite variation in absolute rates
among taxa [60]. Even in bilateral animals with notably
slow mutation rates (e.g. the ancient asexual ostracod Dar-
winula stevensoni, [61]), the rate of mitochondrial substitu-
tion remains faster than that for nuclear loci. In contrast,
the relative rates of substitution in mtDNA and nDNA are
reversed in angiosperms, fungi, anthozoans, and probably
sponges (nDNA evolves an order of magnitude faster than
mtDNA) when compared to bilateral animals (where
nDNA evolves an order of magnitude slower than mtDNA,
[34,35]).

No attribute of the mitochondrial genome itself correlates
obviously with slow, unbiased evolution. For example,
anthozoan mtDNA has group I introns [31,62] like some
plants and fungi, but is compact in size (ca. 16–18 kb) like
most other animals [63]. Instead, the abrupt and unidirec-
tional switch from slow to fast modes of mtDNA substitu-
tion is consistent with the sudden loss of one or a few
mitochondrion-specific DNA repair or replication genes.
A possible candidate gene has been proposed previously
to account for low variation in anthozoans [11,12]: an
ortholog of the mismatch repair gene MSH1 (but see
[64]). MSH1 is known to be mitochondrion-specific in
yeast [65], and is present in the mitochondrial genome of
octocorallian anthozoans [66] but missing from the bilat-
eral animals whose genomes have been sequenced. Loss

of any of the many genes involved in repair [67] could
potentially speed synonymous substitution rates. Note
also that the mitochondrial location of the putative MSH1
homolog in octocorallians is exceptional; MSH1 is not
present in the mitochondrial genome of corals [19,62],
and mitochondrion-specific repair genes are generally
encoded in the nuclear genome.

Regardless of the particular genes responsible, a loss of
mtDNA-specific repair function (or crippling of mtDNA
replication genes) could explain observed low levels of
mtDNA variation and divergence compared to nuclear
genes. Differences in the fidelity of mtDNA repair and rep-
lication could have broad implications. If mutations to
mtDNA caused by oxidative stress promote cellular aging
[68] and organismal senescence [69-71], then the loss of
mtDNA repair abilities may place a physiological ceiling
on longevity. Exploring this possibility will require phylo-
genetic comparisons of covariation in synonymous rates
of substitution in mtDNA and patterns of senescence, as
well as closer examination of the molecular mechanisms
of mtDNA replication and repair across slow and fast
mitochondrial lineages.

Conclusion
Both of the corals surveyed here showed low variation in
mitochondrial coding gene sequence, despite the demon-
stration of extensive nuclear gene variation at allozymes
in one of them previously. Combined with other types of
nuclear variation (AFLPs, ITS, microsatellites) and phylo-
genetic studies reported previously, these results suggest
that the lack of variation in coral mtDNA results from
mechanisms specific to the mitochondrial genome. Syn-
onymous substitution rates suggest coral mtDNA evolves
at rates typical for plants, but about 100 times slower than
for most animals.

Methods
Balanophyllia elegans and Tubastrea coccinea
Balanophyllia elegans is a small solitary coral common at
shallow depths in temperate waters ranging between
northern Baja California and southeastern Alaska. Aver-
age longevity for B. elegans has been estimated at about
8.5 years [72]. Dislodgment and overgrowth by algae
appear to be the principle causes of death in B. elegans;
adults do not appear to senesce nor do the growth rates of
large individuals slow [72].

The larvae of B. elegans crawl along the seafloor during
their brief dispersal [73]. As expected given such limited
larval dispersal, genetic subdivision (inferred using alloz-
ymes) is high between localities separated by hundreds or
thousands of kilometers (FST = 0.28, [29]). The allozyme
markers employed in these genetic surveys were highly
variable, both in terms of their mean heterozygosity (0.3,
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ranging above 0.5 for some loci at some locations) and
number of alleles per locus (2.5). These markers have
been demonstrated as single copy and Mendelian using
controlled crosses [74].

Like B. elegans, Tubastrea coccinea belongs to the family
Dendrophylliidae and broods its larvae. T. coccinea is cur-
rently recognized as a single species with a circum-tropical
distribution [32], however this species has a long history
of taxonomic splitting and synonymization. The Atlantic
form is morphologically indistinguishable from the
Pacific T. coccinea and does not appear in the Caribbean
fossil record, suggesting this species may have been
recently reduced to the Atlantic [40,75]. However these
populations appear to be differentiated at the allozyme
level (E. Weil, pers. comm.); this Atlantic form has been
called T. aurea.

Population sampling
Samples of B. elegans were collected from 18 localities
spanning over 3000 km of the Pacific coast of North
America, namely: Moresby Island, McInnes Island,
Stubb's Island, Nanaimo and Bamfield from British
Columbia; Tatoosh Island from Washington; Cape Arago
from Oregon; Trinidad Harbor, Caspar, Bodega Bay, Santa
Cruz, Monterey, San Simeon, Goleta, East Anacapa Island,
and Point Loma from California; and Punta Banda and
Isla San Geronimo from Baja California.(see [29]). Three
individuals were selected for sequencing from each local-
ity, each from a different subpopulation within that local-
ity. In addition, two individuals were sequenced from
each of eight subpopulations (a total of 16) from Bodega

Bay, where the highest level of allozyme variation
occurred (H = 0.42, averaged over seven loci [29]).

T. coccinea were collected from four localities: Kaneohe
Bay, Oahu, Hawaii (5 individuals); La Paz and Isla Cer-
ralvo in Baja California Sur, Mexico (2); Margarita Reef,
Isla Magueyes, Puerto Rico (1); and four localities along
the coast of Curaçao (4). All samples were taken from 5–
15 m depth.

PCR amplification, sequencing and analysis
DNA was extracted from coral samples using the QIAamp
DNA Mini Kit (Qiagen). A 710-bp fragment of coxI was
initially amplified from B. elegans using primers LCO1490
and HCO2198 of Folmer et al. [76]. The resulting
sequence was used to design an internal primer (Lc2COI,
5'-CGTTATTTTAGTATTTGGGATTGG-3') that was used in
combination with HCO2198 for all subsequent amplifi-
cation and sequencing.

Amplification products were sequenced directly on an ABI
377 using Big Dye Terminator chemistry, except for six
templates (one from an Anacapa B. elegans, and T. coccinea
from Puerto Rico and Curaçao plus three from Hawaii),
which were cloned before sequencing. Multiple sequences
were obtained from these clones to avoid misinterpreta-
tion of PCR errors.

Calculation of substitution rates
Genetic distances and transition/transversion ratios were
estimated using MEGA3 [77]. Jukes-Cantor estimates were
used because all mitochondrial sequences were similar (<

Phylogenetic correlation of tempo and mode of nucleotide substitution in mitochondrial DNA for flowering plants (Angio = Angiosperms), Fungi, Porifera (sponges), Cnidarians (Anthozoans and Scyphozoans), and bilateral animals [Platy = Platyzoa (flat-worms), Lopho = Lophotrochozoa (molluscs, annelid worms, bryozoans), Ecdysozoa (arthropods, nematodes), and Deutero = Deuterostoma (echinoderms, tunicates, vertebrates)]Figure 1
Phylogenetic correlation of tempo and mode of nucleotide substitution in mitochondrial DNA for flowering plants (Angio = 
Angiosperms), Fungi, Porifera (sponges), Cnidarians (Anthozoans and Scyphozoans), and bilateral animals [Platy = Platyzoa (flat-
worms), Lopho = Lophotrochozoa (molluscs, annelid worms, bryozoans), Ecdysozoa (arthropods, nematodes), and Deutero = 
Deuterostoma (echinoderms, tunicates, vertebrates)]. Supporting data: 1 [49] *see text for exceptions; 2 [8]; 3 [43,56]; 4 [59]; 
5 [79,83]; 6 [36]; 7 [35]; 8 [80]; 9 [84]; 10 [34]; 11 [81,85].

 

           Angio    Fungi   Porifera  Anthozoa  Medusozoa   Platy    Lopho    Ecdyso   Deutero

slow syn rate/   yes*
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   yes  yes         yes          no

3
    no

4
 no

5
        no

7, 8
       no

10,11 

low variation? 

high ts:tv bias?   no*
1,2

   no  no         no          yes        yes
4
 yes

6
 yes

7, 9
     yes

10
Page 5 of 8
(page number not for citation purposes)



BMC Evolutionary Biology 2006, 6:24 http://www.biomedcentral.com/1471-2148/6/24
3 % divergence from raw counts) and no strong transition
bias was evident. Numbers of synonymous and nonsyn-
onymous sites were estimated using the methods of Nei
and Gojobori [78], making appropriate adjustments for
taxon-specific variation in the mitochondrial genetic
code. Rates for trans-Ismuthian pairs were calculated
using GenBank sequences for Tegula ([36]: AF080668,
[79]: AF132340), Alpheus ([80]: AF309923, AF309904),
Echinometra ([81]: AF255539, AF255502) and Sphyrna
([33]: L08042, L08043). Rates for the trans-Ismuthian tel-
eost pair Abudefduf saxatlis and A. torschelli were taken
from the literature [82]; sequences for A. saxatlis have not
been deposited in GenBank and so nonsynonymous rates
could not be calculated for this pair. Transition/transver-
sion ratios for scyphozoans were calculated using Cassio-
pea sequences from [58] (AY319448-AY319473).

Abbreviations
mitochondrial DNA (mtDNA); nuclear DNA (nDNA);
cytochrome oxidase subunit I (coxI); MY (million years)
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