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MARINE RADIATIONS AT SMALL GEOGRAPHIC SCALES: SPECIATION IN
NEOTROPICAL REEF GOBIES (ELACATINUS)
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Abstract. Studies of speciation in the marine environment have historically compared broad-scale distributions and
estimated larval dispersal potential to infer the geographic barriers responsible for allopatric speciation. However,
many marine clades show high species diversity in geographically restricted areas where barriers are not obvious and
estimated dispersal potential should bring many sister taxa into contact. Genetic differentiation at small (separation
,1000 km) spatial scales could facilitate speciation by mechanisms other than the gradual accumulation of reproductive
isolation during extended allopatry, such as ecological adaptation to local environmental conditions or the rapid
evolution of genes tied to mate recognition, but the role of each of these possibilities has not been simultaneously
explored for any species-rich marine taxon. Here, we develop a robust phylogenetic framework for 31 taxa from a
species-rich group of Neotropical reef fishes (Gobiidae: Elacatinus) using 3230 bp from one mitochondrial and two
nuclear gene regions. We use this framework to explore the contribution of large- and small-scale geographic isolation,
ecological differentiation, and coloration toward the formation and maintenance of species. Although species of
Elacatinus occur on both sides of the Isthmus of Panama, no sister species are separated by this barrier. Instead, our
results indicate that sister taxa occur within oceans. Sister taxa usually differ by coloration, and more distantly related
sympatric species frequently differ by resource use. This suggests that some combination of coloration and ecological
differences may facilitate assortative mating at range boundaries or in sympatry. Overall, speciation in Elacatinus is
consistent with a model of recurring adaptive radiations in stages taking place at small geographic scales.
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Following Mayr (1942), much of the literature on speci-
ation has focused on identifying geographical barriers that
can facilitate allopatric speciation. This search has been es-
pecially protracted in the marine literature because geograph-
ic isolating barriers are rarely obvious. Populations separated
by several thousands of kilometers have been thought to be
interconnected by pelagic larval dispersal, and thus could
become isolated only by extreme distances or by extrinsic
barriers that prevented dispersal (Mayr 1954; Briggs 1973;
Springer 1982; Benzie 1998). One prominent barrier is the
Isthmus of Panama, which separates closely related tropical
marine taxa in the Atlantic and Pacific oceans (Bermingham
and Lessios 1993; Marko 2002; Fukami et al. 2004). Other
barriers, such as the Eastern Pacific Barrier (Ekman 1953)
and land masses that emerge during lowered sea levels (e.g.,
Grigg and Hey 1992; Benzie 1998; Barber et al. 2002), were
typically inferred by comparison of distributions for taxa be-
lieved to be closely related.

The presence of comparatively few known geographic bar-
riers in the ocean, combined with the dispersal potential of
larvae, does little to explain endemic radiations in tropical
regions such as the Caribbean Sea (e.g., Domeier 1994; Has-
tings 2000; Williams and Mounts 2003; Morrison et al. 2004).
Furthermore, recent studies have found significant genetic
structure, even reciprocal monophyly, at the scale of hundreds
of kilometers (Planes et al. 2001; Riginos and Nachman 2001;
Barber et al. 2002; Dawson et al. 2002; Taylor and Hellberg
2003), as well as sister taxa with sympatric distributions
(Duffy 1996; Hellberg 1998; Collin 2003). The absence of
obvious geographic barriers in these regions, coupled with
evidence of larval retention rather than dispersal (Jones et al.
1999; Swearer et al. 1999; Taylor and Hellberg 2003), sug-

gests that population divergence and speciation may some-
times be mediated by mechanisms other than prolonged,
broad-scale allopatry. Changes in climatic conditions or shift-
ing ocean currents may isolate populations for a period suf-
ficient for populations to diverge (Valentine and Jablonski
1983). Selection acting on differential resource use at local-
ized geographic scales may play an important role in the
speciation process (Duffy 1996; Orr and Smith 1998). Al-
ternatively, the rapid evolution of reproductive traits may also
result in reproductive isolation (Endler and Basolo 1998; Pal-
umbi 1998; Hellberg and Vacquier 1999; Masta and Mad-
dison 2002).

The role of geographical isolation, ecological differenti-
ation (e.g., differences in habitat or behavior), and mate rec-
ognition to the formation and maintenance of new species
can be evaluated in the context of a robust phylogenetic
framework. If species from different lineages share similar
ecological and morphological traits but differ in geographic
distributions, then classic allopatric speciation would be fa-
vored. Alternatively, if sympatric sister species differ eco-
logically, then differences due to resource competition may
have contributed to speciation (Lynch 1989; Losos 1990).
Such inferences assume that species distributions have re-
mained unchanged since their formation; however, when
comparative phylogenetic inferences are coupled with in-
dependent evidence, such as common geographic distribution
among different groups of sister taxa, the interpretation of
historical processes may be reliable (Losos and Glor 2003).

To assess the historical contributions of geography, ecol-
ogy, and mate recognition as processes underlying speciation
requires a suitable taxon. With nearly 2000 described species,
gobies (Gobiidae) constitute the largest family of marine fish-
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TABLE 1. List of species used in this study. Two additional species, Elacatinus (Elacatinus) tenox and E. (Tigrigobius) zebrella were
not available. Color refers to the lateral stripe color for Atlantic species of subgenus Elacatinus.

Species Ocean Color Source of samples

Elacatinus (Elacatinus) atronasus Atlantic yellow Cat Island and Long Island, Bahamas
Elacatinus (E.) chancei Atlantic yellow Barbados, Puerto Rico
Elacatinus (E.) evelynae Atlantic blue1 Curaçao; St. Croix
Elacatinus (E.) evelynae Atlantic white Navassa
Elacatinus (E.) evelynae Atlantic yellow Lee Stocking Island, Bahamas
Elacatinus (E.) figaro Atlantic yellow Brazil (2)
Elacatinus (E.) genie Atlantic white Cat Island, Bahamas; Grand Turk, Turks and Caicos
Elacatinus (E.) horsti Atlantic white Jamaica; Navassa
Elacatinus (E.) horsti Atlantic yellow Cat Island, Bahamas; Curaçao (2); Grand Cayman
Elacatinus (E.) illecebrosus Atlantic blue Colombia (2)
Elacatinus (E.) illecebrosus Atlantic yellow Panama (2)
Elacatinus (E.) lori Atlantic white Belize (2)
Elacatinus (E.) louisae Atlantic yellow Lee Stocking Island, Bahamas; Grand Cayman
Elacatinus (E.) oceanops Atlantic blue Belize (2); Florida Keys (2)
Elacatinus (E.) prochilos Atlantic white Barbados, St. Croix
Elacatinus (E.) randalli Atlantic yellow Curaçao (2)
Elacatinus (E.) xanthiprora Atlantic yellow Belize (2)
Elacatinus (E.) puncticulatus Pacific Gulf of California; Panama
Elacatinus (Tigrigobius) dilepis Atlantic Belize; Curaçao
Elacatinus (T.) gemmatus Atlantic Curaçao; Grand Cayman
Elacatinus (T.) macrodon Atlantic Bermuda, Florida Keys
Elacatinus (T.) multifasciatus Atlantic Cat Island, Bahamas; Puerto Rico
Elacatinus (T.) pallens Atlantic Curaçao; Grand Cayman
Elacatinus (T.) saucrus Atlantic Panama; Puerto Rico
Elacatinus (T.) digueti Pacific Gulf of California (2)
Elacatinus (T.) inornatus Pacific Panama (2)
Elacatinus (T.) janssi Pacific Costa Rica (2)
Elacatinus (T.) limbaughi Pacific Gulf of California (2)
Elacatinus (T.) nesiotes Pacific Cocos Islands; Galapagos Islands
Aruma histrio Pacific Gulf of California
Gobiosoma bosc Atlantic Louisiana
Gobiosoma robustum Atlantic Florida
Ginsburgellus novemlineatus Atlantic Curaçao; Puerto Rico
Risor ruber Atlantic Belize; Curaçao

1 Colin (1975) refers to this as the yellow-blue (YB) from in reference to the blue lateral stripe grading into yellow on the head. We refer to this as the
blue form for simplicity.

es (Nelson 1994). In the Neotropical region, gobies are the
most species-rich family of marine fishes (Robertson 1998).
The Neotropical seven-spined gobies (Gobiosomatini) show
particularly high levels of behavioral specializations and eco-
logical differentiation, all of which have evolved over the
last 40 million years (Rüber et al. 2003). Whether such spe-
cializations continue to influence patterns of speciation
among recently formed taxa remains unknown.

Among the seven-spined gobies is the genus Elacatinus.
This genus, with 27 nominal species (Table 1), is the most
species-rich genus of fishes found on Neotropical coral reefs.
(We follow Hoese [1971] and Eschmeyer [1998] by recog-
nizing the genus Elacatinus with two subgenera, Tigrigobius
and Elacatinus. These subgenera are equivalent to those ap-
plied by Rüber et al. [2003] to the genus Gobiosoma. We use
sensu lato [s.l.] and sensu stricto [s.s.] to distinguish between
the genus and subgenus Elacatinus, respectively.) The sub-
genus Tigrigobius contains 12 described species roughly
equally divided between the Pacific and Atlantic Oceans. The
subgenus Elacatinus has 15 described species, with only a
single species found in the tropical eastern Pacific Ocean
(Table 1). Several species of Elacatinus (s.s.) vary geograph-
ically by coloration but are otherwise morphologically in-
distinguishable (Colin 1975). Examining whether sister taxa
of Elacatinus (s.l.) differ by geographical distribution, by

ecological traits, by coloration differences, or by some com-
bination of these will allow us to infer the mechanisms con-
tributing to the origination of new species in this diverse and
geographically restricted genus.

Here, we build a molecular phylogenetic framework using
mitochondrial and nuclear markers to address mechanisms
that potentially explain the observed diversity within the ge-
nus Elacatinus. Specifically, we address a series of related
questions. First, did the Isthmus of Panama separate sister
species of Elacatinus (s.l.)? If many sister species are so
divided, then closure of the Isthmus would be implicated to
have contributed greatly to species diversity in the genus.
Second, if sister species occur together in the same ocean,
do they have allopatric or sympatric distributions? Sympatric
distributions for recently diverged sister species would sug-
gest mechanisms other than gradual allopatric speciation. Al-
ternatively, allopatric distributions would favor geographic
speciation, albeit at smaller spatial scales than usually posited
for marine taxa. Common distributional patterns for multiple
species would suggest the presence of previously unrecog-
nized geographic barriers. Finally, do sister taxa and sym-
patric taxa have consistent differences in ecological or be-
havioral traits, or in coloration? Such differences would sug-
gest mechanisms that facilitate or maintain assortative mating
at range boundaries and in sympatry.
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MATERIALS AND METHODS

Two individuals from geographically distant populations
were sampled for 21 of 29 ingroup taxa (including both spe-
cies and genetically distinct color forms within species; Table
1); all other taxa were represented by two individuals sampled
from the same population. We obtained samples of all cur-
rently described species and color forms in the genus except
E. (E.) tenox, the white forms of E. illecebrosus and E. xan-
thiprora, and E. (T.) zebrella. Five putative outgroup taxa
were selected based on previous morphological and molec-
ular work (Van Tassell 1998; Rüber et al. 2003). In all, 67
individuals were analyzed. Specimens were collected and
preserved in the field with 95–100% ethanol or a saturated
salt-DMSO buffer (Amos and Hoelzel 1991). Specimens were
subsequently stored in the laboratory at 2808C.

DNA Amplification

Total genomic DNA was extracted from muscle tissue with
a Qiagen (Valencia, CA) DNA Mini Kit by following the
manufacturer’s instructions. The polymerase chain reaction
(PCR) and the primers listed in the online supplementary
table (available online only at http://dx.doi.org/10.1554/
04-590.1.s1) were used to amplify protein-encoding regions
of three genetic markers: mitochondrial cytochrome b
(mtcyb), and nuclear recombination-activating gene 1 (rag1)
and rhodopsin (rho). These three markers were chosen to
provide independent estimates of phylogenetic relationships
and to provide resolution at different hierarchical levels. Pre-
liminary analyses of mtcyb revealed short branch lengths at
some internal nodes within the subgenus Elacatinus. To in-
crease resolution at these nodes, an additional 512 bp were
amplified from the two mitochondrial tRNAs (tRNAGlu and
tRNAPro) immediately following mtcyb and the 59 region of
the mitochondrial control region (mtcr).

The PCR was performed on a PTC-200 (MJ Research,
Watertown, MA) with the following conditions: 948C for
three minutes for initial denaturing, followed by 35 cycles
of 948C for 15 sec, 48–588C for 20 sec, and 728C for 30–60
sec, depending on the primers used. Resulting amplicons
were purified with a Strataprep PCR Purification Kit (Stra-
tagene, La Jolla, CA), then sequenced in both directions with
the amplification primers and Big Dye Terminators (V2.0,
Applied Biosystems, Foster City, CA) on an ABI 377 au-
tomated sequencer. All sequences are available from
GenBank (AY846392–AY846631).

Phylogenetic Analyses

Sequences for each gene region were assembled and edited
with Sequencher 3.0, then aligned with an Internet imple-
mentation of ClustalW (http://www2.ebi.ac.uk/clustalw/) set
to default parameters. The resulting dataset was analyzed
with both maximum likelihood (ML) and Bayesian analyses
using PAUP* version 4.0b10 (Swofford 2000) and MrBayes
3.0b4 (Huelsenbeck 2000), respectively. Evolutionary mod-
els were inferred independently for each marker and for the
combined dataset with the aid of MrModeltest (J. A. A. Ny-
lander, pers. comm.), a simplified version of ModelTest (Po-
sada and Crandall 1998) that selects evolutionary models of

nucleotide substitution applicable by both PAUP* and
MrBayes. For the mtcyb, rag1 and combined generic analyses,
the general time reversible (GTR) model with a proportion
of invariant sites and gamma-distributed rate heterogeneity
(GTR 1 I 1 G) was selected; the rho and mtcr and the com-
bined subgeneric datasets were modeled similarly, except
with a single transition:transversion ratio (HKY 1 I 1 G).
The gamma distribution for each model was approximated
with four discrete rate classes.

Each genetic marker was analyzed separately under both
ML and Bayesian conditions and the appropriate model to
determine whether they have similar phylogenetic histories
and thus were suitable for combined analyses (Bull et al.
1993; Cunningham 1997). Confidence in combined analyses
would be gained if individual markers showed evidence of
similar phylogenetic histories. In contrast, questionable re-
sults would be obtained from a combined dataset if the mark-
ers showed different phylogenetic histories. We considered
the markers to have different histories by the presence of
strongly supported but conflicting clades between markers
(Wiens 1998). We considered a clade to be strongly supported
only if the clade had both ML bootstrap (MLB) support of
$70% and Bayesian posterior probabilities (BPP) $95%
(Leaché and Reeder 2002), as these two values often cor-
respond in simulations (Hillis and Bull 1993; Suzuki et al.
2002). We required both values as evidence for strong support
because Bayesian analyses can occasionally assign high pos-
terior probability values to incorrect clades (Huelsenbeck et
al. 2002), but such clades were much less likely to receive
high bootstrap values (Douady et al. 2003). We considered
the markers to have similar phylogenetic histories, and there-
fore be suitable for combined analyses, only in the absence
of conflicting clades.

All ML phylogenies were estimated with heuristic searches
with tree bisection-reconnection (TBR) branch swapping. A
starting phylogeny was derived from the model and associ-
ated parameters estimated by MrModelTest. The optimal ML
phylogeny was then derived with an iterative approach
(Leaché and Reeder 2002). The initial phylogeny was used
to re-estimate model parameters, which were then used to
derive a new phylogeny. This process was repeated until ML
scores converged on a single value, suggesting the most likely
phylogenetic hypothesis had been found. Support for each
clade was estimated by performing 100 MLB replicates for
each dataset with the final estimated parameters for those
data. Maximum likelihood analyses are computationally in-
tensive, especially for large datasets. To conserve time, boot-
strap analyses for the individual markers were performed with
heuristic searches and nearest-neighbor interchange branch
swapping on a starting neighbor-joining (NJ) tree. For the
two combined datasets, a heuristic search and TBR branch
swapping on a starting NJ tree was performed for 100 boot-
strap replicates. Maximum likelihood bootstrapping of the
combined dataset for the genus-level phylogeny took 4180
hours (nearly six months) of CPU time on a DEC Alpha 1
workstation (600 MHz EV67 21264A processor).

Bayesian analyses were performed by Markov chain Monte
Carlo sampling for 1.2 million generations. Four metropolis-
coupled chains were run simultaneously using uniform prior
probabilities and appropriate model parameters estimated on
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TABLE 2. Uncorrected pairwise distances between representative systematic groups (Fig. 2) for the four genetic markers used in this
study. A single letter after a species name indicates blue (b), yellow (y), or white (w) lateral stripe color, as appropriate.

mtcyb mtcr rag1 rho

Sister taxa
Elacatinus evelynae (b)/E. evelynae (w) 0.0149 0.0417 0.0090 0.0000
E. illecebrosus (b)/E. illecebrosus (y) 0.0211 0.0279 0.0047 0.0000
E. horsti (Curaçao)/E. chancei 0.0127 0.0239 0.0054 0.0031
E. horsti (y)/E. horsti (w) 0.0265 0.0590 0.0029 0.0019
E. macrodon/E. saucrus 0.1182 — 0.0062 0.0081
E. inornatus/E. nesiotes 0.0026 — 0.0004 0.0013
Risor ruber/E. pallens 0.1943 — 0.0612 0.0232
E. multifasciatus/Ginsburgellus novemlineatus 0.2325 — 0.0396 0.0119

Subgenera1

Elacatinus (s.s.)/Tigrigobius (s.l.) 0.2120 — 0.0485 0.0286

Outgroup1

Ingroup/outgroup 0.2171 — 0.0824 0.0498
1 Subgenus Tigrigobius (s.l.) and ingroup both include all members of the Tigrigobius and Risor clades as defined in the text, including Risor ruber and

Ginsburgellus novemlineatus (for details see text and Fig. 2).

a randomly generated starting phylogeny. Trees were sam-
pled from the posterior-probability distribution once every
100 generations. Bayesian analyses were repeated five times
for each dataset to reduce chances of selecting a local but
not global optimum. All parameters were plotted to ensure
each had reached stationarity and to determine the appropriate
burn-in period. Burn-in occurred within the first 100,000 gen-
erations; we conservatively discarded the first 200,000 gen-
erations (2000 trees). The 10,000 sampled trees (after burn-
in) from each of the five independent runs were combined
to determine final posterior probabilities.

Comparisons between alternative phylogenetic topologies
were analyzed a posteriori with the Shimodaira-Hasegawa
(SH) test (Shimodaira and Hasegawa 1999) and 100,000 re-
sampling estimated log-likelihood approximated bootstrap
replicates as implemented in PAUP* (Swofford 2000). As-
sociations between discrete color and ecological character
states were tested with the concentrated changes test (Mad-
dison 1990), as implemented in MacClade 4.06 (Maddison
and Maddison 2003).

RESULTS

Sequences resulting from PCR amplification were trimmed
to exclude ambiguous reads at each end, which yielded 1140
bp for mtcyb, 1290 bp for rag1, and 800 bp for rho, for a
total of 3230 bp for all individuals. Additionally, 143 bp were
amplified for the two tRNAs (144 bp for E. puncticulatus)
and 357–366 bp of mtcr were amplified for all members of
the subgenus Elacatinus, except for a single individual of E.
xanthiprora, for which mtcr could not be amplified. This in-
dividual was excluded from all subgeneric analyses. A single
putative amino acid deletion (three nucleotides) was observed
in mtcyb for both individuals of E. dilepis; no other indels
were observed in mtcyb, rag1, or rho for any species. A single
putative nucleotide insertion was observed in tRNAPro for E.
puncticulatus. Several indels were observed in mtcr. Nucle-
otide positions containing indels were globally excluded from
all phylogenetic analyses. Introns were absent from the se-
quenced regions of rag1 and rho. Average genetic distances

for each marker for representative taxonomic pairs are pro-
vided in Table 2.

We found no evidence for significant topological conflict
among the three markers for both ML (Fig. 1) and Bayesian
(topologies not shown) analyses. Although differences for
some clades are apparent among markers, none of the con-
flicting clades have strong support for both MLB and BPP.
Most topological discrepancies are between mtcyb and the
two nuclear markers. For example, the separate rag1 and rho
phylogenies both place E. gemmatus in a clade with E. pallens
and R. ruber, with 100% support for both MLB and BPP. In
contrast, mtcyb places E. gemmatus basal to the Tigrigobius
and Elacatinus (s.s.) clades with 100% BPP but with less
than ,50% MLB (Fig. 1). Given the lack of significant con-
flict, we concluded that the three genetic markers had a com-
mon phylogenetic history and were suitable for combined
analyses (Bull et al. 1993; Cunningham 1997).

The ML phylogeny estimated from the combined dataset
of mtcyb, rag1, and rho does not support the monophyly of
the genus (Fig. 2). The topology obtained from Bayesian
analysis is identical (not shown). Analyses with unweighted
and weighted maximum parsimony and parsimony bootstrap
(100 replicates) also did not differ qualitatively from ML and
Bayesian analyses (data not shown). Tigrigobius, as currently
recognized (Böhlke and Robins 1968; Hoese 1971), is a poly-
phyletic grouping consisting of two clades. One of these
clades consists of three Atlantic species (E. macrodon, E.
saucrus, and E. dilepis; hereafter, the Tigrigobius clade sensu
Rüber et al. 2003) and is sister to Elacatinus (s.s.) (Fig. 2).
The Tigrigobius clade is strongly supported with 100% MLB
and BPP support. The second, more species-rich clade (sup-
ported by 90% MLB and 100% BPP support) consists of the
remaining Atlantic species, all of the Pacific species, and two
putative outgroup taxa, Ginsburgellus novemlineatus and Ri-
sor ruber (Fig. 2; hereafter, the Risor clade sensu Rüber et
al. 2003). In addition to Ginsburgellus and Risor, Rüber et
al. (2003) found that Evermannichthys spongicola (a species
not sampled here) also fell within the Risor clade. Elacatinus
(s.s.) is recovered as a monophyletic group by the analysis
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FIG. 1. Maximum likelihood phylogenies for the genus Elacatinus derived from three independent markers: mtcyb, rag1, and rho. A
single letter after a species name indicates blue (b), yellow (y), or white (w) lateral stripe color, as appropriate. The number two indicates
where two identical sequences share a branch tip. Population name is indicated for species that do not cluster together. Asterisks indicate
strongly supported branches, with both maximum likelihood (ML) bootstrap proportions $70% and Bayesian posterior probabilities
$95%. None of the conflicting nodes are supported by high ML bootstrap and Bayesian posterior probabilities.

of the mtcyb, rag1, and rho dataset (Fig. 2), and with the
addition of mtcr and the two tRNAs (Fig. 3). The Bayesian
phylogeny was again identical (not shown). The monophyly
of Elacatinus (s.s.) is robust, with 100% support from both
MLB and BPP. The Atlantic radiation in this subgenus is
also monophyletic (100% MLB and BPP), with the single
Pacific species, E. puncticulatus, recovered basal to the At-
lantic species (Fig 3). Although taxonomic revision of the
genus Elacatinus appears necessary, current taxonomic align-
ment does not affect the conclusions drawn here.

Geography

Only two splits are associated with the Isthmus of Panama
(Fig. 2). The first divides the Risor clade into Atlantic and
Pacific subclades. Each subclade is supported by 75% MLB
and 100% BPP. The second split, separating the basal E.
puncticulatus from the Atlantic species of Elacatinus (s.s.),
has maximum support of 100% for both analyses. No sister
taxa are sundered by the Isthmus of Panama.

Instead, sister taxa occur within the same ocean (Fig. 2),
with the degree of geographic overlap between sister taxa

varying among the three major clades. Most sister species in
the Tigrigobius and Risor clades overlap geographically.
Within the Tigrigobius clade, E. macrodon is largely allo-
patric with respect to E. saucrus and E. dilepis, which have
primarily a Bahamian and Caribbean distribution (based on
museum collection records, data not shown). However, E.
macrodon has been collected as far south as Grenada (Böhlke
and Robins 1968), which overlaps the range of the other two
species. Elacatinus saucrus and E. dilepis have primarily
southeastern and northwestern Caribbean distributions, re-
spectively, but may have some degree of overlap because
both have been collected from the Bahamas, Jamaica, Haiti,
and the southern Lesser Antilles. In comparison, the five
species that comprise the Atlantic Risor subclade (Fig. 2) are
broadly sympatric across the Bahamas and Caribbean Sea.
For the Pacific Risor subclade, the range of E. digueti overlaps
all species in this group except for E. nesiotes, which is en-
demic to the Galapagos and Cocos islands. The nominal sister
taxa E. nesiotes and E. inornatus are allopatrically distributed,
but whether these two species are taxonomically distinct from
E. digueti is debated (Bussing 1990; Hoese and Reader 2001).
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FIG. 2. Maximum likelihood (ML) phylogeny (GTR 1 I 1 G) for the combined mtcyb, rag1, and rho dataset for the genus Elacatinus.
Values above the branch or left of a slash are nonparametric ML bootstrap proportions. Values below the branch or right of a slash are
Bayesian posterior probabilities. Support values for the subgenus Elacatinus are shown in Figure 3. Ocean basins and clades are indicated
by vertical bars. The Tigrigobius and Risor clades together comprise the subgenus Tigrigobius as presently defined. See text for details.

The limited divergence (0.1–0.2% uncorrected pairwise dis-
tance) that we found between our representatives of these
taxa suggests they are very close, but our limited sampling
cannot ascertain their species status.

In contrast to the two other clades, many sister taxa of
Elacatinus (s.s.) are allopatrically distributed. For example,
the three color forms of E. evelynae form a well-supported
clade (91% MLB, 98% BPP; Fig. 3) and are allopatrically

distributed across the Bahamas and Caribbean (Colin 1975;
Taylor and Hellberg 2003). In turn, this clade is sister to E.
oceanops (99% MLB, 100% BPP; Fig. 3), which is allopatric
with respect to E. evelynae (Colin 1975). A similar distri-
butional relationship is found for E. prochilos and the color
forms of E. illecebrosus, for E. chancei, E. lori, and the color
forms of E. horsti (Fig. 2; Colin 1975). A white form is also
known for E. xanthiprora (Colin 1975) but it was not obtained
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FIG. 3. Maximum likelihood phylogeny (HKY 1 I 1 G) for the combined mtcyb, mtcr, two tRNAs, rag1, and rho dataset for Atlantic
species of subgenus Elacatinus. Tree was rooted with E. puncticulatus, E. limbaughi, and Ginsburgellus novemlineatus. Support values
indicated on branches as for Figure 2. Ecological traits and mouth position are indicated by vertical bars. Plank., schooling zooplankton
feeder. Only species with inferior mouths placed below and behind snout tip are indicated; remaining species have mouths at snout tip
(see text for details). Branch color corresponds to lateral stripe color.

for this study. The two color forms of E. xanthiprora are also
apparently allopatrically distributed (Colin 1975).

Habitat and Behavior

Fully resolved sister taxa in Elacatinus (s.s.) all share sim-
ilar ecological traits (Fig. 3). Sponge-dwelling (100% MBL
and BPP) and cleaning behaviors (77% MLB, 99% BPP) are
monophyletic clades (Fig. 3), which confirm earlier findings

based on more limited taxon sampling by Rüber et al. (2003).
The sole plankton-feeding species, E. atronasus, falls within
the cleaner clade, although the node containing this species
is not fully resolved (Fig. 3). The placement of E. atronasus
as sister to a monophyletic clade of cleaners cannot be re-
jected (SH test, P . 0.05).

Many sister species within the Risor clade also exhibit
similar ecological traits. All species within the Pacific sub-
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FIG. 4. Coloration and ecological traits of species belonging to
the Tigrigobius and Risor clades. Phylogenetic relationships drawn
from Figure 2. Coloration is given as body ground/features. Shared
ecological traits indicated by vertical bars.

clade (Fig. 4) are facultative cleaners except E. janssi, which
is associated with sandy and rocky substrates (Humann 1993;
Allen and Robertson 1994). Within the Atlantic Risor sub-
clade (Fig. 4), both G. novemlineatus and E. multifasciatus
associate with sea urchins, primarily Echinometra (Erdman
1956; Smith 1957) and Diadema (M. S. Taylor, pers. obs.;
Humann 1994). Elacatinus gemmatus and E. pallens can both

be found in holes drilled by the boring chiton Choneplax lata
(Taylor and Van Tassell 2002). Risor ruber and the putative
sister taxon Evermannichthys (Rüber et al. 2003) are both
obligate sponge dwellers.

Coloration and Patterns

Notably, within cleaner species belonging to Elacatinus
(s.s.), sister taxa differ by the coloration of their lateral stripe
(Fig. 3). The ancestral coloration appears to be yellow, with
white and blue coloration evolving independently multiple
times within the cleaners. No sister taxa share the derived
white or blue coloration. White coloration has evolved at
least twice in sponge-dwelling species (E. horsti and E. lori).
If the unsampled white form of E. xanthiprora is sister to
yellow form E. xanthiprora, then white coloration may have
evolved three times in sponge-dwelling species. A mono-
phyletic origin for each lateral stripe color within cleaners
and within sponge-dwellers was strongly rejected (SH test,
P K 0.001).

Coloration and patterns (e.g., vertical bands or spots) also
distinguish between most sister species in the Tigrigobius
and Atlantic Risor clades (Fig. 4). Most Pacific Risor species
are similar, with subtle differences in coloration and pattern
(Bussing 1990; Hoese and Reader 2001). Among Pacific Ri-
sor, E. janssi differs greatly from the other species by being
spotted rather than banded (Bussing 1981).

DISCUSSION

The results of our combined analysis of three gene regions
suggest that species of the genus Elacatinus (s.l.) fall into
three clades (Fig. 2). Within each of these well-supported
clades, sister taxa always occur to the same side of the Isth-
mus of Panama, which suggests that this potential isolating
barrier has played no important role in the most recent bouts
of species formation in this genus. Instead, sister taxa show
strong differences both in microgeographic (within-ocean)
distribution and in coloration, although the degree to which
this holds varies among the three clades. Sister species also
tend to be ecologically similar, but more distantly related
species often differ ecologically (Figs. 3, 4). Ecological dif-
ferentiation by macrohabitat, followed by diversification of
behavior and microhabitat, has been previously demonstrated
at higher hierarchical levels within the Neotropical gobies
(Rüber et al. 2003), a pattern that fits a model of adaptive
radiation in stages (Streelman and Danley 2003). This model
also explains the phylogenetic pattern of Elacatinus (s.l.)
demonstrated here. Together, this suggests that repeated ra-
diations at small geographic scales, similar to that seen for
terrestrial species on islands (Losos et al. 1998; Sato et al.
1999), may explain much of the gobiid diversity in the Neo-
tropics.

The Geographic Scale of Speciation

That speciation in the marine environment may occur at
much smaller geographic scales than previously believed has
been suggested by many recent studies (Duffy 1996; Hellberg
1998; Riginos and Nachman 2001; Collin 2003; Taylor and
Hellberg 2003; Mackenzie et al. 2004). Three lines of evi-
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dence support this conclusion. First, phylogenetic studies
have revealed that sister taxa often have restricted distribu-
tions along the same coastline or occur sympatrically (Duffy
1996; Hellberg 1998; Marko 1998; Dawson et al. 2002),
which may be a common pattern for species-rich taxa (Collin
2003). Second, experiments with chemical tags provide direct
evidence that larval individuals may not disperse away from
their natal populations (Jones et al. 1999; Swearer et al.
1999). Finally, significant population genetic structure at spa-
tial scales ,1000 kilometers provides indirect evidence for
larval retention (Riginos and Nachman 2001; Barber et al.
2002; Taylor and Hellberg 2003).

Most species of Elacatinus (s.l.) are restricted to the Ca-
ribbean Sea and Bahamas (20 species total, not including
Risor or Ginsburgellus), with only three to four species reg-
ularly found around Florida and in the Gulf of Mexico (Colin
1975; Humann 1994). Additionally, four nominal species of
Elacatinus (s.s.) have multiple, geographically separated col-
or forms (Colin 1975) that are also genetically distinct (Tay-
lor and Hellberg 2003; M. S. Taylor and M. E. Hellberg,
unpubl. data). This suggests that as many as 26 distinct taxa
evolved within a geographic region spanning roughly 3000
km from Belize to Barbados and 3000 km from the northern
coast of South America to the northern Bahamas.

Contained within this region, however, are more than 1000
islands and thousands of kilometers of coastline along Central
and South America. The Bahamas alone contain over 700
islands spanning roughly 1225 km (Spalding et al. 2001).
Most islands within the Bahamas and Caribbean are arranged
in a stepping-stone arc enclosing this region, and are sepa-
rated from neighboring islands by fewer than 100 km. The
close proximity of the islands, coupled with strong currents
and dispersal of planktonic larvae, may in some species fa-
cilitate the rapid spread of unique haplotypes throughout the
Caribbean and Bahamas (Shulman and Bermingham 1995),
which could render distant populations genetically identical.
Yet, despite the potential ability of larvae to disperse up to
500 km in a single generation (Taylor and Hellberg 2003),
the high number of distinct Elacatinus (s.l.) taxa in this region
suggests that gene flow among populations is minimal.

For example, E. evelynae has three allopatrically distrib-
uted color forms (yellow, blue, and white; Colin 1975) that
are genetically distinct (Taylor and Hellberg 2003). A nearly
identical distributional pattern (Colin 1975) is observed for
a group containing E. chancei and genetically distinct color
forms of E. horsti (M. S. Taylor and M. E. Hellberg, unpubl.
data). The different taxa share common distributional bound-
aries in the central Bahamas and at Mona Passage between
Puerto Rico and Hispaniola (Colin 1975). This suggests a
common evolutionary history underlying differentiation of
these taxa that may be influenced by proposed biogeographic
breaks (Colin 1975, 2003; Baums et al. 2005; M. S. Taylor
and M. E. Hellberg, unpubl. data). Yet, even within these
regions, individuals from island populations are genetically
distinct from other such populations, which suggests that
larvae are not dispersing away from their natal populations
(Taylor and Hellberg 2003). This lack of gene flow among
populations may allow allopatric differentiation, and poten-
tially speciation, to occur at geographic scales on the order
of hundreds of kilometers.

A similar allopatric distribution is observed for the Tigri-
gobius clade (Fig. 2). Based on unpublished museum records,
E. saucrus is found primarily in the southern Caribbean, E.
dilepis in the northwestern Caribbean and Bahamas, and E.
macrodon around Florida. Although all three species have
been collected in close proximity to one another (e.g., western
Hispaniola), the primarily nonoverlapping distributions of
these species suggests speciation in allopatry at the scale of
hundreds to thousands of kilometers. The allopatric distri-
bution of sister taxa in Elacatinus (s.l.) suggests that geo-
graphic speciation at small spatial scales may be the most
common mode of speciation in this genus.

Allopatric speciation at larger geographic scales, however,
is evident for some species. Elacatinus figaro in the south-
western Atlantic Ocean may have been isolated from Carib-
bean species (Fig. 3) by the freshwater outflow of the Amazon
and Orinoco rivers. This Amazon barrier has been implicated
in the significant genetic differentiation and speciation of
several coral reef fishes between the southwestern Atlantic
Ocean and Caribbean Sea (Muss et al. 2001; Rocha et al.
2002; Rocha 2003). In the Pacific, E. nesiotes is endemic to
the Galapagos and Cocos archipelagos and is separated by a
vast expanse of open water from its mainland sister taxa of
E. inornatus and E. digueti (Fig. 2). The Galapagos and Cocos
archipelagos harbor a high percentage of gobiid endemics
(Robertson 2001), suggesting their isolation generally proves
beyond the dispersal ability of gobiid larvae.

Radiation in Stages: Ecology and Color

The rate at which allopatric populations give rise to new
species may be enhanced by ecological differentiation and
color-based mate choice (Turner and Burrows 1995; Allender
et al. 2003; McKinnon et al. 2004). Both ecological and col-
oration differences have been implicated as forces that drive
different stages of adaptive radiations (Streelman and Danley
2003). This evolutionary model predicts that divergence dur-
ing adaptive radiations occurs in three intertwined stages:
divergence by habitat, by morphological characters associ-
ated with trophic resource utilization, and by sensory com-
munication. The order of these steps and the degree of di-
versification within each stage may vary among different taxa
(Streelman and Danley 2003); however, this overall pattern
of radiation has been observed for tropical marine fishes
(Streelman et al. 2002; Rüber et al. 2003).

Speciation in Elacatinus (s.l.) appears to match the pattern
of a staged adaptive radiation. Among Elacatinus (s.s.), an
initial ecological divergence in habitat occurred between
cleaners and sponge-dwellers (Fig. 3). Subsequent stages of
diversification appear to be based on color and morphology.
Diversification by color is most notable among cleaner spe-
cies but color changes are evident in both clades, while mor-
phological changes in mouth position have occurred among
cleaner species (Fig. 3). Many cleaners (and all sponge-dwell-
ers), have terminal mouths positioned at the tip of the snout,
but E. evelynae, E. oceanops, E. genie, and E. illecebrosus
all have mouths placed inferiorly well below and behind the
tip of the snout (Böhlke and Robins 1968). As a result, these
four species have been treated previously as a complex of
closely related species (Böhlke and Robins 1968; Colin
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1975); however, a monophyletic origin for inferior mouths
is not supported by our molecular data (SH test, P , 0.05).

A morphological change to an inferior mouth position is
significantly associated with a change to a blue lateral stripe
color (concentrated changes test, P , 0.05). These associated
morphological and coloration changes may be connected with
cleaning behavior. The spectral reflectance of the blue lateral
stripe of E. oceanops is similar to that of the Indo-Pacific
cleaner wrasses and distinct from blues of most other reef
fishes (Marshall 2000). The change to inferior mouth position
may confer an advantage by facilitating removal of parasites
from host fishes. Although speculative, this evidence suggests
that cleaning behavior may in part be responsible for diver-
sification of Elacatinus (s.s.).

The staged pattern of adaptive radiation is also evident for
the Risor and Tigrigobius clades. Initial divergence again
appears to be associated with ecological divergence (Fig. 4).
Among Pacific Risor, initial divergence is between the rock-
dwelling E. janssi and the remaining facultative cleaners. The
facultative cleaners then differ by color pattern, although the
differences are subtle for E. inornatus, E. nesiotes, and E.
digueti (Bussing 1990; Hoese and Reader 2001). Among the
Atlantic Risor species, initial divergence appears to be be-
tween urchin-associated species and those associated with
chiton burrows. This is followed by another habitat shift to
obligate sponge dwelling for R. ruber. Although Figure 4
suggests E. pallens and R. ruber are sister species that differ
by habitat, other evidence suggests that R. ruber is sister to
Evermannichthys spongicola (Rüber et al. 2003), another ob-
ligate sponge dweller not included in this study. Habitat di-
vergence is subsequently followed by divergence in color
(between E. gemmatus, and E. pallens; Fig. 4) or morphology
(between short, stout R. ruber and long, slender E. spongi-
cola). For Tigrigobius, initial divergence among species ap-
pears to be by color patterns, then by habitat, between E.
macrodon and E. saucrus (Fig. 4).

Habitat and coloration differences in Elacatinus (s.l.) may
facilitate assortative mating. Similarly colored sympatric
sponge-dwelling species segregate by depth (Colin 1975),
which could help maintain reproductive isolation. Geograph-
ic isolation between allopatric, genetically distinct color
forms of cleaner Elacatinus (s.s.) could be enforced by host
recognition of cleaners. If cleaner goby coloration serves as
a recognition cue for host fishes, then a differently colored
goby may be perceived by the host as prey rather than as a
cleaner, which would select strongly against immigrants with
different lateral stripe colors (Palumbi and Warner 2003).
We consider this scenario unlikely, however. First, most areas
of the Caribbean harbor at least two sympatric cleaner Ela-
catinus (s.s.), each with a different lateral stripe color, and
both of which may be observed simultaneously cleaning the
same host fish (Colin 1975; Whiteman and Côté 2002). Sec-
ond, as noted previously, some sponge-dwelling species share
common boundaries with cleaner species, but sponge dwell-
ers should not be constrained by host recognition. Thus, the
allopatric distributions of color forms are more likely ex-
plained by larval retention and biogeographic barriers (M. S.
Taylor and M. E. Hellberg, unpubl. data) rather than host
selection based on color differences. Coloration differences,
however, may facilitate mate recognition among both sym-

patric cleaner species and differently colored individuals that
transgress biogeographic breaks.

Color differences between sympatric Atlantic Risor taxa
are also evident. Elacatinus gemmatus and E. pallens are fre-
quently found in the same burrows (Taylor and Van Tassell
2002), but the former is dark-bodied and the latter is pale.
Ginsburgellus novemlineatus and E. multifasciatus are both
strongly banded, but differ greatly by color and the number
of bands (Fig. 4). Although Tigrigobius species appear to be
largely allopatric (see above), they occasionally occur sym-
patrically but differ by pattern, habitat, or both (Fig. 4). These
ecological and coloration differences may simultaneously fa-
cilitate reproductive isolation between sister taxa (Domeier
1994; Seehausen et al. 1997; McMillan et al. 1999) and allow
a greater number of species to coexist in the geographically
compact region of the Neotropics.

Conclusion

Gobies are among the most species-rich taxa of all fishes
(Nelson 1994) and are the largest component of Neotropical
reef fishes (Robertson 1998). Although many Caribbean reef
fishes appear to have large, genetically open populations
(Shulman and Bermingham 1995; Rocha et al. 2002), our
data suggest that, at least for Elacatinus (s.l.), speciation has
occurred primarily in allopatry at small (separation ,1000
km) geographic scales. If gobiid larvae, as well as larvae of
other small reef dwellers such as blennies and snapping
shrimp, tend to remain near their natal reefs rather than dis-
perse (Leis 1991; Duffy 1996), this mechanism alone may
explain their relatively high species diversity. However, pop-
ulations that remain closed for thousands of generations, as
demonstrated for E. evelynae (Taylor and Hellberg 2003),
may be able to adapt to local ecological conditions (Warner
1997; Grosberg and Cunningham 2000). Such ecological ad-
aptation may facilitate rapid divergence between transiently
allopatric populations and increase the potential for specia-
tion (Turner and Burrows 1995; Duffy 1996; Rüber et al.
2003). Much of the historical evolution in the Neotropical
seven-spined gobies, which includes Elacatinus (s.l.), is
based on major shifts in macrohabitat, followed by diversi-
fication of behavior and microhabitat use (Rüber et al. 2003).
Our results suggest that more recent bouts of speciation fol-
low a similar pattern. Thus, repeated stages of adaptive ra-
diations among allopatrically distributed sister taxa may ex-
plain much of the high diversity of gobies in the Neotropics.
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