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DEPENDENCE OF GENE FLOW ON GEOGRAPHIC DISTANCE IN TWO SOLITARY

CORALS WITH DIFFERENT LARVAL DISPERSAL CAPABILITIES

MicHAEL E. HELLBERG!
Department of Zoology and Center for Population Biology, University of California, Davis, California 95616

Abstract.—When the level of gene flow among populations depends upon the geographic distance separating them,
genetic differentiation is relatively enhanced. Although the larval dispersal capabilities of marine organisms generally
correlate with inferred levels of average gene flow, the effect of different modes of larval development on the association
between gene flow and geographic distance remains unknown. In this paper, I examined the relationship between gene
flow and distance in two co-occurring solitary corals. Balanophyllia elegans broods large, nonfeeding planulae that
generally crawl only short distances from their place of birth before settling. In contrast, Paracyathus stearnsii free-
spawns and produces small planktonic larvae presumably capable of broad dispersal by oceanic currents. I calculated
F-statistics using genetic variation at six (P. stearnsii) or seven (B. elegans) polymorphic allozyme loci revealed by
starch gel electrophoresis, and used these F-statistics to infer levels of gene flow. Average levels of gene flow among
twelve Californian localities agreed with previous studies: the species with planktonic, feeding larvae was less ge-
netically subdivided than the brooding species. In addition, geographic isolation between populations appeared to
affect gene flow between populations in very different ways in the two species. In the brooding B. elegans, gene flow
declined with increasing separation, and distance explained 31% of the variation in gene flow. In the planktonically
dispersed P. stearnsii distance of separation between populations at the scale studied (10-1000 km) explained only
1% of the variation in gene flow between populations. The mechanisms generating geographic genetic differentiation
in species with different modes of larval development should vary fundamentally as a result of these qualitative
differences in the dependence of gene flow on distance.
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Species with different life-history and reproductive strat-
egies commonly possess associated differences in dispersal
capability (e.g. insects: Dingle et al. 1980; Roff 1991; benthic
marine invertebrates: Strathmann 1985; Knowlton and Jack-
son 1993; marine teleosts: Roff 1988; salamanders: Shaffer
and Breden 1989). Dispersal differences may in turn produce
different patterns of genetic exchange among populations
within a species, thereby altering the process by which gene
flow, genetic drift, and natural selection interact to produce
geographic variation in genetic characters. Broad dispersal
should genetically homogenize populations, as immigrants
originate in widely different selective environments. In con-
trast, geographically restricted gene flow enhances differ-
entiation among populations, as the relatively few immigrants
arriving from nearby populations tend to resemble residents
genetically (Wright 1943; Kimura and Weiss 1964; Endler
1973). Species with limited dispersal capabilities should
therefore show higher levels of genetic subdivision than sim-
ilar species with greater dispersal capabilities for two dif-
ferent (although not completely independent) reasons: (1)
fewer migrants move among populations; and (2) the ho-
mogenizing effects of gene flow attenuate more rapidly with
increasing separation.

In benthic marine organisms, interspecific differences in
dispersal are determined primarily by the ontogeny of larvae.
This is because adult stages are generally sessile or sedentary
and larvae with different ontogenies spend varying amounts
of time developing, and presumably dispersing, in the plank-
ton. The variation in larval dispersal capability among species
can be enormous: the larvae of some species spend many
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weeks in the plankton (Strathmann 1987) and can be found
thousands of kilometers offshore (Scheltema 1971, 1988);
the larvae of other species settle literally in the shadow of
their mothers (Ostarello 1976; Gerrodette 1981; Olson 1985;
Grosberg 1987). Consequently, interspecific differences in
the mode of larval development have been causally linked
to differences in geographical range (Scheltema 1971, 1977,
Shuto 1974), rates of colonization (Scheltema 1977; Valen-
tine and Jablonski 1983), and levels of gene flow (Scheltema
1977; Hedgecock 1986; Knowlton and Jackson 1993).

A mechanistic understanding of how interspecific differ-
ences in reproductive patterns influence the evolution of the
species exhibiting these patterns requires knowledge of how
levels of gene flow change with increasing geographic sep-
aration between populations. Estimates of gene flow (Nm)
based on hierarchical measures of subdivision (F-statistics)
can clearly document the extent of genetic subdivision. To
use these estimates to analyze the relationship between gene
flow and distance, Slatkin (1993) suggested a regression ap-
proach: plot all pairwise estimates of gene flow (M) between
populations against the distances separating those popula-
tions. Resulting regression coefficients and correlations can
be compared to analytical or simulated expectations for dif-
ferent population structures and dispersal tendencies.

I used this approach to compare the relationship and as-
sociation between gene flow and geographic distance in two
solitary corals that differ in their larval dispersal capabilities.
In the limited disperser Balanophyllia elegans Verrill, I pre-
viously found a strong association between inferred levels of
gene flow and geographic distance at a spatial scale of hun-
dreds of meters to tens of kilometers (Hellberg 1995) and a
weaker association at a scale of hundreds to thousands of
kilometers (Hellberg 1994). Here, I ask whether such changes
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in inferred gene flow with distance also occur in Paracyathus
stearnsii Verrill, which possesses broadly dispersed, plank-
tonic larvae.

MATERIALS AND METHODS
Natural History of Corals

The solitary scleractinian corals P. stearnsii and B. elegans
both live subtidally along the Pacific Coast of North America.
They share a common geographic range extending from
northern Baja California to at least northern British Columbia
(Durham and Barnard 1952). These two species occupy sim-
ilar microhabitats, often co-occurring on vertical rock faces
at depths of 7-15 m (Chadwick 1991). Densities of P. stearn-
sii in these habitats may reach 25 per m? (Fadlallah and Pearse
1982a). Densities of B. elegans at similar depths can be an
order of magnitude greater (Gerrodette 1981; Fadlallah
1983a). Both species are dioecious, with nearly even sex
ratios, and exhibit reproductive peaks in the late winter and
early spring (Fadlallah and Pearse 1982a,b).

Female B. elegans brood up to 50 large (2-3 mm), non-
feeding planulae annually. These larvae disperse very locally,
often attaching within 40 cm of their mother after crawling
over hard substrata for only a few days (Gerrodette 1981;
Fadlallah 1983a).

Mature female P. stearnsii may harbor over 10° oocytes.
In contrast to B. elegans, ova are fertilized and develop out-
side of the mother. The larvae of P. stearnsii are among the
smallest known for any scleractinian (160 X 95 um). Al-
though feeding by these larvae has not been observed di-
rectly, their small size, abundant ciliation, and the presence
of an anterior invagination all suggest that these larvae are
planktotrophic (Fadlallah and Pearse 1982a). Laboratory-
reared larvae swam for over four weeks, but never settled.
Dispersal distances in nature remain unknown.

Collection of Samples

I collected individuals of both P. stearnsii and B. elegans
from each of the same 12 localities spanning most of the
coast of California (Figure 1). Adjacent localities were be-
tween 8 km and 302 km apart. At each locality, I gathered
individuals from within an area of 100-1000 m?. I gathered
B. elegans from three to eight circular patches (radius < 33
cm). Adjacent patches were 4—6 m apart. Paracyathus stearn-
sii were collected (usually on the same dive) as encountered
while sampling B. elegans. I collected only adult corals (those
greater than approximately 6 mm in diameter). All samples
were taken from between 5 m and 20 m below mean lower
low water. I sampled all localities between April 1990 and
July 1993. I removed encrusting algae and epifauna from
coral samples before freezing them in liquid nitrogen in the
field. Samples were subsequently stored at —80°C.

Electrophoresis

For P. stearnsii, I characterized six-locus genotypes for all
individuals. I ran all samples using 12% (w/v) starch gels.
Enzyme stains and electrophoretic conditions were modified
from Selander et al. (1971). I assayed three loci—hexokinase
(Hk, EC 2.7.1.1), phosphoglucose isomerase (Pgi, EC
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Fic. 1. The 12 Californian localities from which Paracyathus
stearnsii and Balanophyllia elegans were sampled. Abbreviations:
TRN (Trinidad Harbor, 41°03'N, 124°08'W), HSH (Horseshoe
Point, 38°36'N, 123°22'W), NER (Nereocystis Ridge, 38°34'N,
123°19'W), PFR (Northwest Cape, Fort Ross, 38°31'N, 123°15'W),
BOD (off Bodega Head, 38°20'N, 123°00'W), MON (Monterey,
36°34'N, 121°52'W), CMB (Carmel, Monastery Beach, 36°31'N,
121°55'W), SIM (San Simeon, 35°37’'N, 121°08'W), GOL (Goleta,
34°26'N, 119°57'W), EAN (East Anacapa Island, 34°01'N,
119°22'W), SBI (Santa Barbara Island, 33°28'N, 119°02’'W), and
PLK (Point Loma Kelpbeds, 32°43'N, 117°16'W).

5.3.1.9), and triosephosphate isomerase (Tpi, EC 5.3.1.1)—
using the pH 8.0 Tris-citrate buffer system of Selander et
al. (1971). I added 4 pl of 2-mercaptoethanol to 300 ml
starch gels just before pouring to improve the resolution of
Pgi bands. Three other loci—peptidase (Pep, EC 3.4.11/13.,
leucyl alanine substrate), and two forms of aspartate ami-
notransferase (Aatr, EC 2.6.1.1)—were assayed using the
more dilute pH 8.0 Tris-citrate buffer system of Ward and
Beardmore (1977). Aat-1 migrated farther than Aar-2. Two
additional loci, phosphoglucomutase (Pgm, EC 2.7.5.1), and
mannose-phosphate isomerase (Mpi, EC 5.3.1.8), were ini-
tially screened, but ultimately their extremely high levels
of variation and limited separation of electromorphs pre-
cluded consistent scoring. Alleles were numbered to indi-
cate their percent mobility relative to the most common
allele at that locus. I included two internal standards in two
lanes within each gel.

For B. elegans, 1 scored seven loci (Hk, Pgi, Tpi, Pep-LA,
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Aat, Pgm, and Lap, EC 3.4.11.1/2) as described previously
(Hellberg 1994). Alleles were numbered to indicate their per-
cent mobility relative to the most common allele at that locus
from Santa Cruz.

Analysis

I used Wright’s F-statistics (Wright 1978) to characterize
overall genetic subdivision. These statistics partition total
heterozygote deficiency (as compared to populations under
panmixia) (Fip) into components due to deficiencies within
populations (Fig) and subdivision among populations (Fgr).
Gene flow (Nm), the average effective number of migrants
exchanged between populations each generation, can be es-
timated from this measure of genetic subdivision using the
relationship Nm = (1 — Fgt)/4Fg1, assuming that genes move
with equal likelihood among all populations. This relation-
ship also assumes that gene flow and genetic drift have equil-
ibrated, that the rate of migration greatly exceeds that of
mutation, and that the genetic markers employed are selec-
tively neutral.

Wright’s parameters were calculated using the estimators
of Weir and Cockerham (1984), which should accurately es-
timate average Nm if 10 or more populations are sampled
and the migration rate (m) is less than 0.1 (Slatkin and Barton
1989; Cockerham and Weir 1993). I computed allele fre-
quencies and hierarchical F-statistics from genotype fre-
quencies using the program of Weir (1990). The program
estimated standard errors by jackknifing over loci.

To infer the pattern of gene flow between proximate pop-
ulations from spatial patterns of genetic differentiation, [ used
M, the estimate of Nm calculated separately for pairs of pop-
ulations. In a linear array of populations in which gene flow
is restricted to immediately adjacent populations, the ex-
pected slope of a regression of log;g (M) versus log;, (dis-
tance of separation) is —1.0. In a two-dimensional array, the
expected slope of the log-log regression is —0.5 (Slatkin and
Maddison 1990; Slatkin 1993). M should be viewed not as
the actual number of migrants between a pair of populations
each generation, but rather as equivalent to the number of
migrants necessary to account for observed genetic differ-
ences if migrants could move directly between populations
(rather than passing through intermediaries, as may be the
case).

I computed M based on 6 (Weir and Cockerham 1984) and
Ggt (Nei 1973) for all pairwise combinations of populations
using a program provided by M. Slatkin. Estimates of M
based on Ggt (Mgst) should be about twice those based on
6 (M,) for pairwise comparisons (Slatkin 1993; Cockerham
and Weir 1993). Because Ggr is bounded positive and has a
lower variance than 6, estimates of Mggr correlate slightly
more strongly with separation than do estimates of M,, es-
pecially when M levels of gene flow are high (Hellberg 1995).
In contrast, 6 is unbiased but may go negative when gene
flow is high. In these instances, its inverse function M will
be undefined. I estimated the shortest nautical distance be-
tween localities from 24,000:1 and 1,000,000:1 scale maps.

I used ordinary least-squares (OLS) regression, with de-
grees of freedom adjusted to the number of populations sam-
pled (not the number of pairwise comparisons), to determine
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whether the slope of the regression was different from zero.
The significance of the relationship between log (M) and log
(distance of separation) could not be evaluated using standard
regression techniques, as the regression is based on nonin-
dependent, pairwise comparisons. The confidence intervals
of these adjusted OLS regressions are identical (to two dec-
imal places) to confidence intervals from Mantel’s test (Hell-
berg 1994). These confidence intervals were also used to
determine whether the relationship between gene flow and
distance differed between the two species.

Asymmetric 95% confidence intervals about the slope of
reduced major axis (RMA) regressions were calculated fol-
lowing McArdle (1988), using degrees of freedom appro-
priate for the number of populations sampled. RMA regres-
sion better estimates the relationship between gene flow and
proximity than does OLS regression when geographic dis-
tance approximates the number of dispersal steps between
populations (Hellberg 1994). OLS regression underestimates
the slope of the regression in such cases because OLS re-
gression assumes the independent variable (the number of
dispersal steps separating populations in this case) is mea-
sured without error. However, RMA regression coefficients
by their definition cannot equal zero, so the OLS regression
is more appropriate for significance testing.

I calculated expected heterozygosities (Nei 1978) at each
locality using allele frequency data for each locus, and then
averaged over the six loci surveyed, using BIOSYS (Swof-
ford and Selander 1989).

RESULTS

The six loci surveyed in P. stearnsii were highly poly-
morphic in all localities sampled (Appendix). The average
heterozygosity within localities was 0.43 (SD = 0.030). Boot-
strapped 95% confidence intervals were significantly greater
than zero for Fgr, but not Fip or Fig (Table 1), indicating a
small, but significant heterozygote deficit between localities,
but no deviation from panmixia within localities. Fgr ap-
peared concordant across marker loci, although Hk was (non-
significantly) negative. The mean Fgt of 0.0039 is equivalent
to over 60 immigrants arriving at each locality per generation.

The Appendix also lists allele frequencies for the two lo-
calities from which B. elegans had not previously been sam-
pled. Allele frequencies for the remaining ten populations,
and for the 26 additional populations refered to below, are
published elsewhere (Hellberg 1994, 1995). In contrast to the
weak genetic subdivision evident in P. stearnsii, B. elegans
exhibited strong subdivision both within and among popu-
lations (Table 2). The mean Fgr for B. elegans (= 0.20) is
equivalent to genetic homogenization resulting from one im-
migrant per generation.

Simulations show M and geographic separation should be
inversely correlated (slope = —1.0) in linearly distributed
populations obeying the assumptions of the stepping stone
model (Slatkin and Maddison 1990; Slatkin 1993; Hellberg
1994). For B. elegans sampled from the same twelve localities
as P. stearnsii, the OLS regression between log (M) and log
(distance of separation) was significant (P < 0.001) and dis-
tance explained 31% of the variation in levels of gene flow
(Fig. 2). However, the relationship was generally weaker than
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TaBLE 1. Weir and Cockerham (1984) estimates of Wright’s F-statistics calculated separately for each locus for Paracyathus stearnsii
collected from 12 localities. Means and standard errors were obtained by jackknifing over loci. Confidence intervals were obtained by

bootstrapping over loci.

F=Fy 0 = Fy; f— Fi

Locus (within total) (among localities) (within localities)
Hk —0.0362 —0.0006 —0.0036
Pgi -0.0117 0.0027 -0.1212
Tpi 0.1185 0.0118 0.1080
Pep 0.0445 0.0044 0.0403
Aat-1 0.0948 0.0016 0.0933
Aat-2 0.0067 0.0095 —0.0028
Mean —0.0161 0.0039 —0.0201
Standard error 0.0374 0.0018 0.0368

95% confidence interval

—0.0734-0.0615

0.0012-0.0079

—0.0756-0.0549

the inverse relationship expected for a linear stepping stone
(Table 3). Although the three closest pairwise comparisons
in the regression based on B. elegans from the twelve common
localities largely determined the significance of the relation-
ship between M and distance, these three values were typical
for populations separated by these distances (Hellberg 1995).
Including 26 additional localities from which only B. elegans
was sampled resulted in a nearly identical RMA regression
and even stronger association (r> = 0.60) between M and
distance (Table 3).

In the planktonically dispersed P. stearnsii, inferred gene
flow showed no obvious relationship with distance of sepa-
ration (Fig. 2, Table 3). The RMA slope of log (Me) versus
log (distance of separation) was —1.19 (—0.37 for Mgsr),
however these regression coefficients overestimate the actual
relationship whenever correlations are very weak, as the
RMA regression slope is calculated using a ratio of variances
and therefore cannot equal zero. OLS squares regression,
more appropriate for significance testing, clearly revealed a
nonsignificant relationship between log (M) and log (dis-
tance), with 95% confidence intervals that included zero. Dis-
tance explained only a very small proportion of the variance
in gene flow between populations of P. stearnsii. Because
gene flow in P. stearnsii was so high, 8 went negative for 18
of the 66 pairwise comparisons. As a result, the test for
interspecific differences in OLS regression slopes based on
6 was very conservative and proved insignificant. Regression
slopes based on Mgt (in which both species have values for
all pairwise comparisons) differed interspecifcally (Table 3).

DiscussioN

Balanophyllia elegans and Paracyathus stearnsii possess
larvae that differ in dispersal capability. Consequently, de-
pendence of gene flow on geographic distance should differ
between these two corals. The data shown in Figure 2 and
summarized in Table 3 support this expectation. The inferred
levels of gene flow between populations of B. elegans, which
possesses crawling planulae (Gerrodette 1981; Fadlallah
1983a), declined significantly with increasing distance of sep-
aration. However, in P. stearnsii, whose larvae disperse
planktonically (Fadlallah and Pearse 1982a), distance ex-
plained almost none of the variation in inferred gene flow
between pairs of populations (Table 3). The relationship be-
tween gene flow and geographic distance differed between
these two species when M was estimated using Nei’s Ggr
(Table 3), despite the high uncertainties associated with pair-
wise estimates of gene flow (Cockerham and Weir 1993).
Interspecific differences in regression slopes were not sig-
nificant when M was estimated using Weir and Cockerham’s
6, however the variance in estimates of gene flow based on
0 is greater than those based on Ggp (Cockerham and Weir
1993), so this comparison was less powerful.

The different relationships between inferred gene flow and
geographic separation in these two scleractinians could con-
ceivably result from processes other than larval dispersal.
These alternatives include the following: (1) selection acting
on the genetic markers used to infer gene flow; (2) conflation
of locality-specific and species-specific variation; and (3) spe-
cies-specific biological differences other than larval dispersal.

TABLE 2. Weir and Cockerham (1984) estimates of Wright’s F-statistics calculated separately for each locus for Balanophyllia elegans
collected from 12 localities. Means and standard errors were obtained by jackknifing over loci. Confidence intervals were obtained by

bootstrapping over loci.

F=Fr O = Fgr f=Fg
Locus (within total) (among localities) (within localities)

Hk 0.3013 0.2078 0.1181
Pgm 0.2690 0.2659 0.0042
Pgi 0.1962 0.1382 0.0673
Tpi 0.1637 0.1573 0.0077
Pep 0.2749 0.2957 —0.0296
Aat 0.3098 0.2767 0.0458
Lap 0.1162 0.1058 0.0116
Mean 0.2199 0.1953 0.0306
Standard error 0.0382 0.0363 0.0176

95% confidence interval 0.1650-0.2840

0.1422-0.2624 0.0034-0.0698
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FiG. 2. Ordinary least-squares (OLS) regressions of inferred gene flow (M, individuals/generation) versus geographical distance of
separation (km) for all pairwise combinations of 12 localities of Paracyathus stearnsii (closed squares) and Balanophyllia elegans (open
circles). Pairwise comparisons for B. elegans, which include an additional 26 localities (crosses), are also shown (no line shown). Axes
are logarithmically scaled. See Table 3 for regression equations. M was based on an average of six or seven electrophoretically polymorphic
enzyme loci, respectively, as estimated by 8 (Weir and Cockerham, 1984). One point for P. stearnsii (M, = 12,883 at 564 km) does not
appear, but was included in regression calculations. Eighteen pairwise comparisons for P. stearnsii resulted in negative 0s (and thus

undefined M,) and were excluded from the regression.

Natural selection on allozyme markers does not appear to
have created the contrasting patterns of genetic structure in
the two corals. Variation among loci within each species does
not implicate strong selection because patterns of subdivision
revealed by hierarchical F-statistics (Table 2) are largely con-
cordant across loci in B. elegans. Paracyathus stearnsii like-
wise shows general concordance across loci, with all loci
except Hk exhibiting slight heterozygote deficits among lo-
calities (Table 1). Excluding Hk (or any other single allozyme
marker) from the regression analysis did not significantly

alter the relationship between M and distance in P. stearnsii:
slopes remained insignificant and r> was never greater than
2.4% (results not shown). Balancing selection might con-
ceivably homogenize the allele frequencies I found at dif-
ferent localities (Karl and Avise 1992), however, such bal-
ancing selection would have to be far stronger within P.
stearnsii than within B. elegans to account for the differences
I reported.

Interspecific differences in the relationship between gene
flow and distance could be confounded with differences spe-

TaBLE 3. Ordinary least squares (OLS) and reduced major axis (RMA) regression equations of log (M) as a function of log (distance)
for Paracyathus stearnsii and Balanophyllia elegans. M was calculated using both © (Weir and Cockerham 1984) and Ggr (Nei 1973).
Regressions for B. elegans were calculated separately for 12 populations from which P. stearnsii was also sampled, and for 38 populations,

which included 26 additional localities.

OLS RMA
N Intercept Slope Slope 95% CI* r? Slope Slope 95% CI
M,
P. stearnsii 12 2.089 —0.106 —0.498 =b =0.286 0.008 —1.191** -062=v=-229
B. elegans 12 0.881 —0.325 —0.191 =b=-0459 0.311 —0.582 —033=v=-101
38 1.197 —0.431 —0.405=b=-0457 0.603 —0.554 —045=v=-0.68
I\’\/IGST
P. stearnsii 12 1.527 —0.042 —0.145 = b = 0.061 0.013 —0.372%%* —0.19=v=-0.56
B. elegans 12 1.107 —0.302 —-0.175=b = -0.429 0.308 —0.541 -031=v=-09%4
38 1.353 —0.387 —0.365 =b = -0.409 0.631 —0.487 —040=v=-0.60

* CI based on N — 2 df, not on the total number of pairwise comparisons.

** RMA estimates of slope become unreliable where OLS slopes are not significantly different from zero.
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cific to particular sampled localities if the two species were
not collected from the same places. For example, if only one
of the species had been collected from a locality unusual in
its selective environment, then inferred levels of gene flow
between this unusual locality and others could be either in-
flated or deflated by selection on the allozyme markers them-
selves (directly altering the frequencies of the markers used
to infer gene flow), or on the success of incoming migrants
(altering the actual pattern of genetic exchange). This selec-
tive effect would influence the relationship between gene flow
and distance for one species, but not the other. Inferred gene
flow also might differ among equidistant localities due to
unequal levels of either past or present-day gene flow due to
corridors (e.g. currents) or barriers (e.g. headlands, unsuitable
habitat) to dispersal. I collected samples of both species from
the same twelve localities, usually on the same dive, and
often within centimeters of each other. The possibility re-
mains that differences between alternative sets of localities
differentially affect the two species, so that the relationships
between gene flow and distance reported here could vary for
other sets of localities. However, including 26 additional sites
for Balanophyllia elegans showed that the relationship be-
tween gene flow and distance revealed by the twelve localities
considered here were typical for this species (Fig. 2).

Ideally, comparisons of the genetic consequences of dif-
ferent modes of larval dispersal would not only sample the
same localities and use the same genetic markers, but would
contrast sister taxa that differed solely in their mode of larval
development. Although P. stearnsii and B. elegans belong to
different families, the Caryophylliidae and Dendrophylliidae
respectively, larval dispersal characteristics vary little within
the dendrophylliid clade. As far as is known, all members of
the genus Balanophyllia (Gerrodette 1981; Kinchington 1981
Fadlallah 1983a), and some members of its probable sister
group, Tubastrea (Babcock et al. 1986), release only crawling
larvae. Indeed, most dendrophylliids brood nonfeeding plan-
ulae (Fadlallah 1983b). Thus, it was necessary to look outside
the species most closely related to B. elegans for a comparison
to planktonically dispersing larvae. Paracyathus stearnsii and
B. elegans differ in many aspects of their life histories (Ger-
rodette 1981; Fadlallah and Pearse 1982a,b; Fadlallah 1983a),
as well as in their aggressiveness (Chadwick 1991). But be-
yond the difference in mode of larval dispersal, these dif-
ferences would not obviously modify their genetic structure.

Two types of evidence support the hypothesized correlation
between levels of gene flow and mode of larval development.
First, species with philopatric larvae exhibit greater capacity
for adaptive change to geographically variable selective re-
gimes (Vermeij 1982; Janson 1983; Behrens Yamada 1989)
than do species with larvae that spend long periods in the
plankton (Strathmann et al. 1981). Second, geographic sur-
veys of allozyme markers consistently indicate lower levels
of average gene flow in species with limited larval dispersal
than in closely related, co-occurring taxa possessing broadly
dispersed larvae (Berger 1973; Janson 1987; Waples 1987;
Duffy 1993; Hunt 1993).

Although the magnitude of gene flow (the number of im-
migrants) differs among species possessing different larval
dispersal potential, several lines of evidence suggest that the
association between gene flow and geographic distance may
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not vary as dramatically among such taxa. First, species with
limited larval dispersal may sometimes disperse to distant
(nonadjacent) populations by rafting of adults (Highsmith
1985; Jokiel 1991). Second, many clades do not conform to
the generalized correlation between larval dispersal and geo-
graphic range (Jackson 1986; O’Foighil 1989; Vermeij et al.
1990). Likewise, species with feeding larvae do not neces-
sarily make better colonizers (Johannesson 1988). Further-
more, several mechanisms may geographically restrict gene
flow affected by the dispersal of planktonic larvae, including
larval behavior (Burton and Feldman 1982), postsettlement
mortality (Koehn et al. 1976; Johnson and Black 1984; Hed-
gecock 1986), and passive transport mediated by coastal ge-
ography and currents (Berglund and Lagercrantz 1983; Ebert
and Russell 1988; Bertness and Gaines 1993), so that levels
of gene flow, although large relative to species with non-
feeding larvae, might nonetheless decline with increasing
separation between populations.

Patterns of DNA sequence variation further support the
notion that planktotrophic species may not disperse as broad-
ly as once thought. Geographic variation in mtDNA (Reeb
and Avise 1990) and scnDNA (Karl and Avise 1992) among
Atlantic populations of the American oyster (Crassostrea vir-
ginica) suggest gene flow may be geographically restricted
despite the apparent wide dispersal capabilities of this spe-
cies’ pelagic larvae. However, this strong genetic differen-
tiation may stem in part from the recent hybridization of
populations formerly isolated during Pleistocene climatic
fluctuations, which apparently divided many marine species
currently inhabiting the southeastern coast of the United
States (Bert 1986; Reeb and Avise 1990; Cunningham et al.
1992). Along the Pacific Coast of North America, the few
studies of molecular variation to date agree with the conclu-
sions reached here. The brooding tidepool copepod Tigriopus
californicus, a limited disperser, exhibits geographically con-
cordant patterns of mitochondrial and nuclear sequence vari-
ation that, in addition to revealing a phylogenetic break not
apparent from allozyme data, evince a close association be-
tween genetic similarity and geographic proximity (Burton
and Lee 1994). In contrast, geographic surveys of the plank-
tonically dispersed urchin Strongylocentrotus purpuratus
have revealed no evidence of a dependence of gene flow on
distance (Palumbi and Wilson 1990). The planktonically dis-
persed sea cucumber Cucumaria miniata exhibits high
mtDNA haplotype diversity and no evidence for population
structure over a broad geographic range, while a single com-
mon haplotype tends to dominate in populations of its con-
generic brooder C. pseudocurata (A. Arndt, pers. comm.
1995).

If, as seems likely then, the different patterns of genetic
change with distance in P. stearnsii and B. elegans truly re-
flect differences in the dispersal capabilities of their respec-
tive larvae, then mechanisms generating geographic diversity
within similar species should vary depending on their mode
of development. Assuming that proximate populations in-
habit more similar selective regimes than do distant popu-
lations and that these selective conditions remain constant
over time (Bell 1992), the progeny of species with geograph-
ically limited dispersal should experience a pattern of selec-
tion similar to those of their parents. Additionally, most im-
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migrants will genetically resemble residents, further facili-
tating the accumulation of locally differentiated genotypes
over generations (Janson 1983, Behrens Yamada 1989).
These differences may become so great that further genetic
exchange is curtailed, and increasing differentiation may re-
sult (Burton 1987).

In contrast, the offspring of species with broad, geograph-
ically unbiased dispersal will commonly find themselves in
selective environments quite different from those of previous
generations. In obligately sexual species with planktonic lar-
val dispersal, then, adaptive differentiation among popula-
tions will require either strong postsettlement selection each
generation (Koehn et al. 1976; Johnson and Black 1984; Hil-
bish 1985; Hedgecock 1986; Watts et al. 1990), or physical
barriers (such as inlets) that partially isolate populations (Ber-
glund and Lagercrantz 1983; Bertness and Gaines 1993).

The data presented here strongly suggest that different
modes of larval development result in qualitatively different
relationships between the magnitude of gene flow and geo-
graphic distance (see Shaffer 1984, for a terrestrial analog).
These differences imply that geographic differentiation in
genetic characters is established by different mechanisms in
species with different larval dispersal capabilities. Studies
that simultaneously estimate gene flow between localities
(and around barriers) and measure local adaptive differences
between these same localities (e.g., Stearns and Sage 1980)
are needed to define more soundly the evolutionary conse-
quences of different life-history patterns in benthic marine
invertebrates.
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