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ABSTRACT: Per- and polyfluoroalkyl substances (PFASs) pose a
significant health threat to humans at trace levels. Because of its
ubiquity across the globe, there have been intense efforts to rapidly
quantify PFASs in the environment while also mitigating their release.
This work reports an electrochemical sensor with a selective
perfluorinated anion exchange ionomer (PFAEI) coating for direct
sensing of perfluorooctanoic acid (PFOA)a type of PFAS. Notably,
the sensor operates without the need of redox probes and has a limit
of detection around 6.51 ± 0.2 ppb (15 nM) in buffered deionized
water and drinking water. By testing the sensor with different ionomer
electrode coatings, it was inferred that the PFAEI favors PFOA anions
over other competing anions in solution through a combination of
electrostatic and van der Waal interactions.

■ INTRODUCTION

Per- and polyfluoroalkyl substances (PFASs) are a byproduct
of the amazing materials that make up our everyday life (e.g.,
fire-fighting foams, lubricants, non-stick cookware, coatings for
textiles, carpet, paper, food packaging, etc.).1−7 These
chemicals, and their high-molecular-weight polymer analogues
(e.g., polytetrafluoroethylene), are termed “Forever Chemicals”
because of their exceptional chemical stability in the presence
of oxidizers and extreme pH values. The miracles wrought by
perfluorinated polymers have unfortunately led to the release
of PFASs into the environment. As such, PFASs pose serious
remediation challenges and threats to public health.8,9 For
example, bioaccumulation of PFASs in humans is well-
documented and cause cancer,10 estrogen disruption,11 protein
misfolding,12 birth defects, and other health risks.13−17 These
challenges have spurred research in technologies for PFAS
sensing,18 removal,19−21 and destruction upon sequestra-
tion.22−24

Traditional detection methods for PFASs in environmental
matrices rely upon on complex machinery such as LC−MS and
HPLC. These instruments are bulky and expensive and require
time-consuming sample preparation. Although accurate and
reliable, they cannot quantify PFAS contaminants within a
minute or less. Because field workers may wish to identify
PFAS concentrations rapidly or to sense a containment vessel
leak, there is a critical need to develop economical and
straightforward PFAS sensing technologies with broad
applicability.

Electrochemical detection platforms25−29 are an enticing
prospect for PFAS sensing in the field as it is portable, robust,
and economical. Electrochemical sensors have been shown to
detect PFASs in a diverse class of matrices ranging from
environmental water to blood serum, with concentration of
perfluorooctanoic acid (PFOA) ranging from 15.7 to 128 ppb,
especially in a community residing close to PFAS production
facilities.30 A notable electrochemical sensor by Karimian et
al.31 showed a level of detection (LOD) of 0.04 nM (17ppt)
for PFOS in deionized (DI) water using a template-assisted
molecularly imprinted polymer. This sensor provides indirect
detection of PFOS because it relies upon the ferrocenecarbox-
ylic acid redox-active probe. The electrochemical signal from
this probe is quenched by the presence of PFOS. The strong
affinity of PFOS for common electrodes, like gold, necessitates
a molecularly imprinted polymer to stymie PFOS adsorption.
Without a porous polymer coating, any amount of PFOS
would quickly saturate the electrode response. There are also
other ferrocene-based redox probes for electrochemical sensing
of PFOS,32,33 some with molecularly imprinted polymers. In
one of these other demonstrations,32 GenX, which is also a
similar class of perfluoroalkyl acids, was quantified in actual
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river water at concentrations approaching ∼1 pM. A drawback
of these indirect electrochemical sensors for PFASs is that they
require the addition of redox-active probes. The need to carry
chemical reagents with the sensor is inconvenient for portable
electronics, like smartphones, and can complicate the sensor
design.
In this letter, a rapid and direct electrochemical sensor for

PFOA is demonstrated through the appropriate selection of a
selective ionomer coating [i.e., a perfluorinated anion exchange
ionomer (PFAEI)] and adoption of commercially available
screen-printed electrodes (SPEs). The ability to perform direct
sensing of PFOA was attributed to electrostatic, van der Waal,
and hydrophobic interactions34,35 between the PFAEI coating
and PFOA. These interactions were inferred by testing other
ionomer coatings that consisted of a hydrocarbon anion
exchange ionomer [quaternary benzyl pyridinium chloride
poly(arylene ether sulfone) (QPPSf)], a hydrocarbon cation
exchange ionomer [sulfonic acid polyether ether ketone
(SPEEK)], and a perfluorinated cation exchange ionomer
(Nafiona type of perfluorosulfonic acid). Figure S1 provides
the chemical structures of the various ionomer coatings
assessed in this work. The other ionomer coatings minus the
PFAEI were ineffective for sensing and highlighted the need
for anion exchange ionomers with perfluoro backbones and
side chains to promote the van der Waal interactions and
quaternary ammonium groups for PFOA anion exchange.

■ RESULTS AND DISCUSSION

Figure 1a illustrates a SPE with a PFAEI coating for PFOA
sensing. SPEs are often used for sensing in biological
applications. Because of the sensors’ planar nature, they are
conducive for the deposition of PFAEI and other ionomer
coatings on the electrodes. A similar class of perfluorinated
polycationic ionomers, specifically Tosflex IE-SA 48-based
anion exchange ionomer-modified glassy carbon electrodes,
was previously demonstrated in the trace level detection and
speciation of heavy metal ions (Hg2+ and Cu2+) and toxic
pollutants like 2-napthol in waters.36−39 One advantage of the
PFAEI coating studied here is that it prevents direct PFOA
adsorption on platinum. With respect to the sensing
mechanism, it was postulated that the tethered quaternary
ammonium moiety in the PFAEI exchanges with the PFOA
anion in solution. The perfluoro-nature of the PFAEI backbone
is conducive for PFOA anion adsorption and ion pairing with
the tethered quaternary ammonium. Hence, both van der Waal
and electrostatic interactions work cooperatively for promoting
PFOA uptake in the PFAEI. The perfluoro backbone favored
the perfluoro chain in PFOA, and the quaternary ammonium
groups favorably interacted with the carboxylate anion in
PFOA. The proton released from the exchanged PFOA can
permeate the PFAEI as the quaternary ammonium groups are
screened by the PFOA anion (i.e., poorly dissociated), and
protons break and form bonds with water. Hence, the protons
can easily permeate through anion exchange materials despite
other cations resisting permeation due to the Donnan
exclusion (note: this is a well-known phenomenon as it is

Figure 1. (a) Preparation of PFAEI coating on commercial SPE configurations. (b) Proposed mechanism for PFOA sensing with PFAEI coating on
the SPE.
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difficult to devise anion exchange membranes that resist acid
crossover).40 The protons then migrate to the negatively
biased electrode across the PFAEI−PFOA anion material to
undergo the hydrogen evolution reaction (HER). The current
response from HER was used to detect and quantify PFOA in
solution. Figure 1b conveys the PFOA anion exchange with the
PFAEI, proton permeation in the PFAEI to the cathode, and
the HER process.
Figure 2a compares the current response from square wave

voltammetry (SWV) experiments of a platinum wire working
electrode with various ionomer coatings immersed in 7.68 μM
PFOA buffered solution. Figure 2b compares the normalized
current at −0.4 V versus Ag/AgCl for the platinum working
electrodes with different ionomer coatings. These two plots

unequivocally demonstrate that the PFAEI material is the best
coating for sensing PFOA. The cation exchange ionomers,
Nafion and SPEEK, cannot adsorb PFOA anions due to
Donnan exclusion. The QPPSf anion exchange ionomer has a
hydrocarbon backbone that is not conducive for PFOA
adsorption. As discussed earlier, it is the perfluoro backbone
and quaternary ammonium groups of the PFAEI that favor
PFOA anion adsorption.
After identifying the most effective ionomer coating, SWV

was performed with the platinum working electrode coated
with the PFAEI with solutions that contained different PFOA
concentrations (Figure 2c). The range was 0.77−100 μM. As
the PFOA concentration increased, the current response

Figure 2. (a) SWV of platinum wire working electrode data with different ionomers at a PFOA concentration of 7.68 μM; (b) normalized current
response with different ionomers at −0.40 V vs Ag/AgCl; (c) SWV of wire data with PFAEI coating with various PFOA concentrations at −0.40 V
vs Ag/AgCl. (d) Normalized current responses as a function of PFOA for a given cathodic peak potential for the PFAEI ionomer-coated Pt and
neat Pt electrode @ −0.40 V vs Ag/AgCl; and (e) bar graphs with different interfering anions for the platinum-coated PFAEI measured at an
applied potential of −0.47 V vs Ag/AgCl using chronoamperometry.
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increased, but the peak current slightly shifted from −0.35 V at
low concentrations to −0.45 V at high concentrations.
PFAEI-coated platinum was downselected to be a promising

working electrode for PFOA sensing. Figure 2d plots with
normalized current response from SWV experiments with a
platinum wire working electrode with and without PFAEI
coatings as a function of the PFOA concentration in solution.
The working electrode potential values for the normalized
current measurements were −0.40 V versus Ag/AgCl. Figure
2d shows a commensurate current response with increasing
PFOA concentration for the platinum working electrode with a
PFAEI coating. Conversely, the working electrode wire with no
PFAEI coating experienced a slight decrease in the current
response when increasing the PFOA concentration in solution.
Figure 2d demonstrates the viability of the PFAEI as an
effective coating for sensing PFOA with platinum.
In the final experiments with a working electrode wire in a

three-point setup, other interfering anions (e.g., nitrate,
phosphate, and sulfate), added as potassium salts, were
added to the liquid solution matrix with PFOA and without
PFOA to test how these interfering anions affect the PFOA
sensing. Figure 2e provides the normalized current response
with platinum-coated PFAEI working electrodes for three
liquid samples of varying PFOA concentrations and mixed with
50 μM of interfering anions from potassium salts. These
experiments were performed with chronoamperometry, and
the current was analyzed at −0.47 V versus Ag/AgCl. In the
presence of nitrate, sulfate, and phosphate anions, the
normalized current response got larger with increasing PFOA
concentration. Hence, the platinum wire-coated PFAEI is a
promising candidate for PFOA detection in aqueous solutions
with phosphate, sulfate, and nitrate salts. These initial
experiments motivated planar, single-substrate sensor studies
for PFOA detection in buffered DI water and drinking water.

With an appropriate coating and metal electrode identified,
SPEs with PFAEI coatings were prepared and assessed for
PFOA sensing in DI water with sodium perchlorate/perchloric
acid and drinking water using SWV (Figure 3a,b, respectively).
To make the plots clear, SWV traces for a few PFOA
concentrations and a solution with no PFOA are only
presented. Figure 3c,d shows the normalized current response
for the SPE with PFAEI coating with various PFOA
concentrations in buffered DI water and drinking water,
respectively. Notably, PFOA concentrations were sensed in
both buffered DI water and drinking water at concentrations as
low as 15 nM PFOA with the Pine SPE coated with the PFAEI.
The 15 nM detection limit achieved in this work is about 2

orders of magnitude higher than the EPA health advisory level
(0.14 nM) and is roughly 10 times higher than the total
allowed PFAS concentration limit in drinking water recom-
mended from the European Health Commission.41 Although
the electrochemical sensor reported in this work does not rival
the state-of-the-art for LOD in synthetic and actual water
solutions, it is a direct method that does not require the
addition of redox active probes.33 We envision further
improvements in LOD by optimizing the PFAEI coating
thickness with molecular control using the Langmuir Blodgett
technique42 and the use of nanostructured platinum43 on the
working electrode for enhancing the surface area for
adsorption.43

In summary, a judiciously selected ionomer coating, PFAEI,
with commercially available SPEs was developed to sense
PFOA in model and actual drinking water samples as low as 15
nM. One potential limitation of the work/technology is the
requirement of an optimal acidic pH, ∼1.5, to ensure that
PFOA remains neutral for adsorption onto the PFAEI while
also ensuring a large enough proton concentration exists to
minimize the ohmic losses and to promote the HER. The pKA
value of perfluoro-alkyl substances can range from <1 to

Figure 3. SWV data of SPE with PFAEI coating interfaced with (a) buffered DI water and (b) drinking water. Normalized current response from
chronoamperometry experiments at potential values that gave peak current for (c) buffered DI water and (d) drinking water.
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−3.44,45 Future work will focus on improving the electro-
chemical sensor with the PFAEI by increasing the wire
electrode surface area through an alternative circuit design and
incorporation of high-surface area, nanoscale platinum electro-
catalysts and by optimizing the PFAEI thickness. Additionally,
a sensor that can operate robustly without the need of any
additional chemicals, such as buffering agents, will also be
pursued.

■ EXPERIMENTAL SECTION
Materials. Stock materials and purities are provided in the

Supporting Information.
Preparation of Ionomer-Coated SPEs for PFOA

Detection. Ceramic SPEs with platinum working (3.14
mm2) and counter electrodes and a silver−silver chloride
reference electrode (Ag/AgCl) were acquired from Pine
Research. The ionomer [3 wt % in a mixture of isopropanol
(IPA) and N,N-dimethylacetamide (DMAC)] was drop-casted
on the SPE followed by drying at room temperature and
removing the solvent further by vacuum drying for 5 min at
room temperature. Thickness of the ionomer coated on the
substrate was determined via ellipsometry and was about 50−
70 nm.
Preparation of PF-AEI-Coated Wire Electrodes for

PFOA Detection. Pt metal wire electrodes (OD = 0.5 mm;
approximate total surface area = 0.58 cm2) were submerged in
solution of 3 wt % ionomer in a mixture of IPA and DMAc for
3 min followed by vacuum drying for 5 min to obtain PFAEI-
coated metal wire electrodes.
Electrochemical Sensing Experiments with Wire

Electrodes. A potentiostat/galvanostat, Gamry Instruments
1010E, was employed for SWV and chronoamperometry
experiments. PFOA sensing was demonstrated using a three-
electrode configuration, with a platinum wire serving as a
working electrode, a platinum counter electrode, and a Ag/
AgCl reference electrode. 7.69 mM PFOA analyte stock
solution was prepared in DI water. The electrolyte solution (10
mL) containing 70 mM HClO4 and 33 mM NaOH of pH 1.5
was titrated with 0−132 μL of PFOA stock solution (7.69
mM) to obtain the desired final PFOA concentration in the
range of 0.77−100 μM at pH ∼ 1.5 before measuring the
current responses using voltammetry and chronoamperometry
techniques. All experiments used supporting electrolyte
containing 70 mM HClO4 and 33 mM NaOH with PFOA
in a concentration range of 0.76−100 μM at pH ∼ 1.5. The
normalized current response i/i* is used to represent the
sensor response versus PFOA concentration (note: i* is the
current response with no PFOA present in the solution). The
chronoamperometry measurements were performed in the
same concentration range by applying a cathodic step potential
of −0.47 V versus Ag/AgCl for the platinum wire coated with
the PFAEI for a period of 60 s.
Electrochemical Sensing Experiments with SPEs.

SWV was carried out on the Pine SPEs immersed into the
solution that contained PFOA of varying concentrations in the
range from 0 to 500 nM. A supporting electrolyte matrix before
the addition of PFOA contained perchloric acid (HClO4) at 70
mM and sodium hydroxide at 33 mM. This resulted in a
solution pH of 1.5. All SWV experiments are conducted in the
potential window from 0 to −1.0 V versus the Ag/AgCl
reference electrode using a 50 mV amplitude, a potential step
of 0.75 mV, and a frequency of 25 Hz. Mild stirring was
applied during the SWV experiments. Chronoamperometry

measurements were performed by applying a cathodic step
potential of −0.76 V on SPEs for a period of 60 s. The
cathodic peak potential in different experiments was
determined from voltammetry measurements.
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