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Synopsis   Animals use visual communication to convey crucial information about their identity, reproductive status, 

and sex. Plasticity in the auditory and olfactory systems has been well-documented, however, fewer studies have tested 

for plasticity in the visual system, a surprising detail since courtship and mate choice are largely dependent on visual 

signals across taxa. We previously found reproductive state-dependent plasticity in the eye of the highly social cichlid fish 

Astatotilapia burtoni. Male A. burtoni increase their courtship, including multicomponent visual displays, when around 

ovulated females, and ovulated females are more responsive to male visual courtship displays than non-ovulated females. 

Based on this, we hypothesized that ovulation status impacts visual capabilities in A. burtoni females. Using electro-

retinograms, we found that ovulated females had greater visual sensitivity at wavelengths corresponding to male court-

ship coloration compared with non-reproductively-receptive females. In addition, ovulated females had higher neural 

activation in the retina and higher mRNA expression levels of neuromodulatory receptors (e.g., sex-steroids; gonado-

tropins) in the eye than non-ovulated females. Here, we add to this body of work by testing the hypothesis that cone 

opsin expression changes with female reproductive state. Ovulated females had higher expression of short wavelength 

sensitive opsins (sws1, sws2a, sws2b) compared with mouthbrooding females. Further, expression of sws2a, the most 

abundant opsin in the A. burtoni eye, positively correlated with levels of circulating 11-ketotestosterone and estradiol and 

estrogen, androgen, and gonadotropin system receptor expression in the eye in females. These data indicate that repro-

ductive state-dependent plasticity also occurs at the level of photoreceptors, not just through modulation of visual signals 

at downstream retinal layers. Collectively, these data provide crucial evidence linking endocrine modulation of visual 

plasticity to mate choice behaviors in females. 

Introduction   
Across taxa animals use visual communication to con-

vey information about their identity, motivation, re-

productive state, sex, and species. Males often ramp up 

their coloration and courtship during reproductive 

seasons or when around reproductive females 

(Osorio and Vorobyev 2008). A male’s body colora-

tion or ornament size can be indicative of parasite 

load and overall health, which can provide females 

with crucial honest information during mate choice 

(Houde and Torio 1992; Thompson et al. 1997; Ness 

and Foster 1999; Moln�ar et al. 2013). Similarly, the 

intensity or vigorousness of courtship displays could 

also provide information on overall fitness that can be 

used to make mate choice decisions (Sargent et al.   

1998). As such, animals that use visual courtship dis-

plays must be able to adequately detect these impor-

tant signals to optimize communication. 

Endocrine modulation of social communication 

has been demonstrated in several senses and across 

taxa. For example, female fishes, amphibians, and 

birds that are closer to reproduction are better able 

to detect their mate’s call and/or are more responsive 

to the calls (Sisneros and Bass 2003; Lynch and 

Wilczynski 2008; Miranda and Wilczynski 2009; 

Caras et al. 2010; Maney and Pinaud 2011; 
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Reproductive plasticity of opsin expression 

Maruska et al. 2012; Maruska and Sisneros 2015). 

Similarly, metabolic and reproductive states are 

known to modulate chemosensory capabilities 

(Mousley et al. 2006; Palouzier-Paulignan et al. 

2012; Nikonov et al. 2017). In fishes, visual capabil-

ities can also be modulated by an animal’s reproduc-

tive state. Androgens affect visual capabilities in male 

goldfish (Shao et al. 2014; Yue et al. 2018), and ex-

ogenous estrogens influence opsin expression in the 

eye of mosquito fish (Friesen et al. 2017). In  

humans, sex steroids are linked to healthy ocular 

function (Affinito et al. 2003), such that decreased 

estrogen signaling after menopause is linked to de-

creased tear production (Mathers et al. 1998) and 

lower protection against age-related eye diseases 

(e.g., glaucoma; Zhou et al. 2007; Vajaranant et al. 

2010). In T� frogs, females treated with theungara 

reproductive hormone hCG exhibited higher visual 

sensitivity, but the same plasticity was not observed 

in hormonally-treated males (Leslie et al. 2020). 

Together, these studies suggest that reproductive 

hormones play a neuromodulatory role in vision 

and eye function across taxa. 

We recently found reproductive state-dependent 

plasticity in the visual system of female cichlid 

Astatotilapia burtoni, but not males (Butler et al. 

2019). Male A. burtoni exist on a dominance contin-

uum ranging from dominant to subordinate pheno-

types, which they can rapidly and reversibly switch 

between. Dominant males are brightly colored, often 

with either blue or yellow body coloration and 

brightly colored orange/red spots on their fins 

(Fernald 1977; Fernald and Hirata 1977). They can 

turn on a dark eyebar and a red humeral patch 

depending on their social environment, with a dark 

eyebar often displayed in aggressive contexts and the 

red humeral patch more closely related to courtship 

(Leong 1969; Heiligenberg et al. 1972; Wapler-Leong 

1974). To court females, males produce a series of 

visual displays, including a body quiver, tail waggle, 

and leading the female back to his territory. 

Subordinate males are drably colored, do not hold 

territories, and are often found with females. When 

around ready to reproduce females, dominant males 

increase their use of multicomponent courtship dis-

plays with twice as many displays performed toward 

ovulated females than non-ovulated gravid females 

that are still at least a day from reproducing 

(Butler et al. 2019). In turn, ovulated females are 

more responsive to male courtship displays. By ori-

enting toward the behavior, following the male, and 

more time in the spawning territory, ovulated 

females perform more affiliative, mate choice-like 

behaviors than non-ovulated gravid and non-gravid 
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females. Together, this indicates that both males and 

females modulate their reproductive behaviors based 

on the female’s ovulation status, with males increas-

ing their production of visual displays and females 

being more responsive to them. 

Based on these ovulation-specific changes in inter-

sexual behavior, we hypothesized that visual capabil-

ities would vary with female reproductive state 

(Butler et al. 2019). Using electroretinograms we 

found that as a female approaches spawning, she 

has greater sensitivity to 500–550 nm wavelengths 

of light. After being induced to ovulate via injections 

of prostaglandin F2a, females had a two-fold increase 

in sensitivity across the visual spectrum (450– 

650 nm). In addition, ovulated females had higher 

neural activation in the inner nuclear and ganglion 

cell layers (INL, GCL) of the retina in response to a 

courting male than did non-ovulated gravid females. 

We also found that ovulated females had higher ex-

pression of gonadotropin system receptors and sex 

steroid receptors in the eye than did non-ovulated 

gravid females and non-reproductive mouthbrooding 

females. Together, these data suggest that ovulated 

females are better able to detect components of 

male visual courtship displays. 

Here, we sought to further examine the potential 

mechanisms underlying visual plasticity in A. bur-

toni. Our previous measures (electroretinograms 

(ERGs) and neural activation) examined retinal plas-

ticity from modulatory and information transfer cells 

in down-stream retinal layers. While an increase in 

ON-bipolar cell activity (ERGs) and higher activa-

tion in the INL and GCL could indicate increased 

sensitivity at the level of the photoreceptors, they 

could also reflect increased modulation of the signal 

as it is transferred through the retina. To examine if 

there is reproductive state dependent plasticity at the 

level of the photoreceptors, we used quantitative 

PCR to measure expression of cone opsin genes in 

the eyes of ovulated, non-ovulated gravid, and 

mouthbrooding females, and in dominant and sub-

ordinate males. We chose to measure only cone op-

sin genes because male body coloration is likely 

important for female mate choice and reproduction. 

Astatotilapia burtoni express seven cone opsins 

(Fernald and Liebman 1980; Fernald 1981; Carleton 

2009; O’Quin et al. 2011): short wavelength sensitive 

sws1, sws2a, and sws2b, middle wavelength sensitive 

rh2a-a, rh2a-b, and rh2b, and long wavelength sen-

sitive lws. Short wavelength sensitive opsins detect 

UV (sws1) and blue wavelengths of light, while lws 
is sensitive to more yellow/orange/red color ranges of 

light (Fernald and Liebman 1980; O’Quin et al. 

2010). The middle wavelength sensitive opsins are 
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242 J. M. Butler and K. P. Maruska 

more broadly tuned to blue/green/yellow color 

ranges of light (Fernald and Liebman 1980; O’Quin 

et al. 2010). We found that opsin expression varied 

with female reproductive state. Further, expression of 

sws2a, which comprises �50% of all opsins in the 

female eye, positively correlated with levels of circu-

lating sex steroids. When combined with past work 

on visual plasticity in A. burtoni, these data indicate 

plasticity is also occurring at the level of the photo-

receptors and not just through downstream modu-

lation or processing of visual signals. This provides 

further evidence to support that reproductive and 

ovulation state mediate visual capabilities in a species 

that is dependent on visuals signals for mate choice 

behaviors. 

Materials   and   methods   
Experimental animals 

Laboratory-bred A. burtoni were maintained in com-

munity aquaria (114 L) with gravel substrate and at 

least two to three terra cotta pots to serve as spawn-

ing territories for males. Environmental conditions 

mimicked natural conditions (pH ¼ 7.6–8.0; 28– 

30 C; 12 L:12 D diurnal cycle), and fish were fed 

cichlid flakes (AquaDine, Healdsburg, CA, USA) 

daily. All experiments were performed in accordance 

with the recommendations and guidelines stated in 

the National Institutes of Health (NIH) Guide for 

the Care and Use of Laboratory Animals, 2011. All 

animal care and collection were approved by the 

Institutional Animal Care and Use Committee at 

Louisiana State University, Baton Rouge, LA, USA. 

We used the same samples for the study reported 

here as those used for qPCR analyses in Butler et al. 

(2019). We collected eyes from five groups of fish: 

ovulated females, non-ovulated gravid females, 

mouthbrooding females, dominant males, and sub-

ordinate males. Gravid (ovulated and non-ovulated) 

females were selected based on the presence of a 

distended abdomen, slightly distended jaw, and pres-

ence of courting males. Ovulated females were visu-

ally distinguished from non-ovulated gravid females 

based on a slightly distended jaw and protruding 

urogenital papilla, and were confirmed to have ovu-

lated (eggs released from follicular/ovarian mem-

brane) during dissection. All gravid females 

(ovulated and non-ovulated) had high levels of re-

productive investment (i.e., gonadosomatic index, 

GSI, >7.0). Mouthbrooding females were collected 

5–10 days after the onset of brooding, with low levels 

of reproductive investment (GSI < 1.0). Males were 

collected from dyadic paradigms where they were in 

their respective social status for at least 30 days (GSI: 

dominant > 0.70; subordinate < 0.50). All fish were 

of approximately the same size (standard length: 

41.54 6 6.63 mm; body mass: 2.23 6 1.02 g). Fish 

were collected over a two-year period but likely share 

similar genetic backgrounds because of being col-

lected from a laboratory-bred stock. 

Tissue collection and processing 

All fish were collected at the same time of day to 

minimize any changes associated with diurnal opsin 

expression (Halstenberg et al. 2005). All fish were 

exposed to full-spectrum LED lights that did not 

differ between the groups, so any changes in gene 

expression are not due to differences in light envi-

ronments (Nandamuri et al. 2017). Fish were quickly 

netted from their home aquaria, measured for stan-

dard length and body mass, blood collected via the 

caudal vein, and sacrificed via rapid cervical transec-

tion. Both eyes were removed from the head by clip-

ping the optic nerve as close to the eye as possible, 

the lens and any excess tissue surrounding the eye 

removed, and immediately frozen and stored at 

80 C until processing. Serum was isolated from 

blood samples and stored at 80 C until processing. 

RNA extraction from eye samples was done follow-

ing the manufacturer’s protocol (RNeasy Plus Mini 

Kit, Qiagen) and consistent RNA amounts were used 

in cDNA synthesis reactions (iScript, BioRad). 

Quantitative PCR 

We measured expression of six cone opsin genes 

(sws1, sws2a, sws2b, rh2a, rh2b, and lws) using pre-

viously published primers (Carleton and Kocher 

2001; O’Quin et al. 2011; Supplementary Table S1). 

The primers for rh2a amplify both rh2a-a and rh2a-

b, so our data are presented as just rh2a. qRT-PCR 

was performed on a CFX connect Real-Time system 

(BioRad) using the following reaction parameters: 

95 C for 30 s, 45 cycles of 95 C for 1 s, and 60 C 

for 15 s; and followed by a melt curve analysis. 

Although these primers were designed for a taqman 

protocol, each primer pair produced a single melt 

peak at the expected temperatures. PCR Miner 

(Zhao and Fernald 2005) was used to calculate reac-

tion efficiencies and cycle thresholds. The relative 

amount of mRNA was normalized to the expression 

of gnat2 (cone-specific alpha subunit of transducin), 

which does not vary with reproductive/social state 

(females: F2,26 ¼ 1.278, P ¼ 0.296; males: 

F1,28 ¼ 3.176, P ¼ 0.086), using the following for-

mula: Relative target gene mRNA levels ¼ [1/ 

(1 Etarget)^CTtarget]/[1/(1 Egeomean)^CTgeomean] 

100, where E is the reaction efficiency and CT is the 
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Reproductive plasticity of opsin expression 

average cycle threshold of the duplicate wells. Cycle 

threshold values and primer efficiencies were 

checked for all samples for all genes (average CT 

values ¼ gnat2: 24–26; sws1: 32–36; sws2a: 23–28; 

sws2b: 26–32; rh2a: 24–28; rh2b: 32–34; lws: 22– 

26). All primer efficiencies were in the same range 

(88–94%), allowing data to be combined across mul-

tiple plates. We did not compare expression between 

males and females because gnat2 expression, as well 

as other commonly used reference genes (e.g., eef1a, 

18 s, rpl32, gapdh), is significantly different with sex 

(F1,56 ¼ 35.517, P < 0.001). 

Hormone assays 

We measured circulating levels of 11-ketotestoster-

one (11-KT), estradiol (E2), and progestins (P4) us-

ing enzyme-linked immunosorbent assays on serum 

collected from ovulated, non-ovulated gravid, and 

mouthbrooding females (Cayman Chemical; estra-

diol: 582251; 11-KT: 582751; progestins: 582601) as 

part of the previous study (Butler et al. 2019). We  

did not perform hormone assays on males, but read-

ers are referred to the extensive published data on 

circulating steroids in dominant and subordinate 

males (e.g., Maruska et al. 2012; Maruska 2014, 

2015). Kits have been previously validated for this 

species (Maruska and Fernald 2010). Intra-assay 

CVs were 9.94%, 9.27%, and 10.10% for 11-KT, 

E2, and P4, respectively. 

Statistical analyses 

All statistics were done in R. Briefly, we first tested 

for normality and outliers (Iglewicz and Hoaglin 

1993) in all data. qPCR data were analyzed using 

ANCOVAs with reproductive state and sex as fixed 

effects, standard length as a covariate, and Tukey’s 

tests for pairwise comparisons. Discriminant func-

tion analysis was used to group animals based on 

opsin composition using within-groups covariances 

and all groups considered equal (package: MASS; 

Venables and Ripley 2020). Missing values were 

replaced with the group mean. Correlations were 

assessed using Pearson product moment tests. All 

data and code for analyses will be provided upon 

reasonable request. 

Results   
Opsin expression varies with reproductive state 

All six of the measured opsins are detectable in the 

eye, most in a reproductive state-dependent manner 

(Fig. 1). Expression of short wavelength sensitive 

opsins (sws1: 360 nm, sws2a: 456 nm, and sws2b: 
423 nm) varies with female reproductive status 
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(sws1: F2,28 ¼ 4.256; P < 0.023; sws2a: F2,28 ¼ 6.138, 

P ¼ 0.007; sws2b: F2,28 ¼ 5.659, P ¼ 0.009), but not 

male social status (sws1: F1,28 ¼ 0.022; P ¼ 0.884; 

sws2a: F1,28 ¼ 0.130, P ¼ 0.863; sws2b: F1,28 ¼ 1.852, 

P ¼ 0.185). For all three short wavelength sensitive 

opsins, ovulated females have higher expression 

than mouthbrooding females (sws1: P ¼ 0.010; 

sws2a: P ¼ 0.002; sws2b: P ¼ 0.005), and non-

ovulated gravid females are intermediate between 

the two groups. Rh2a (523 nm) expression does not 

vary with female reproductive state (F2,26 ¼ 0.129, 

P ¼ 0.880) or male social status (F1,28 ¼ 1.122, 

P ¼ 0.299). In contrast, rh2b (472 nm) expression 

varies with female reproductive state (F2,26 ¼ 3.566, 

P < 0.043), such that brooding females have higher 

expression than ovulated and gravid females. In 

males, subordinate males have higher rh2b expres-

sion than dominant males (F1,28 ¼ 6.905, 

P ¼ 0.014). Finally, lws (561 nm) expression does 

not vary with either female reproductive state 

(F2,26 ¼ 0.414, P ¼ 0.615) or male social status 

(F1,28 ¼ 0.046, P ¼ 0.831). 

The pattern of opsin expression generally follows 

that previously published for adult A. burtoni, with 

high levels of sws2a, rh2a, and lws, low expression of 

sws2b, and little-to-no-expression of sws1 or rh2b 
(Fig. 2A). In all fish, sws2a is the most abundant 

opsin expressed, comprising 48% and 40% of total 

opsin expression in females and males, respectively. 

Rh2a comprised 16% of female opsin expression, but 

25% of male opsin expression. Expression of lws 
makes up �35% of total opsin expression in all 

fish. Sws2b comprises �2% of total opsin expression, 

and rh2b and sws1 expressions are each less than 1% 

of total opsin expression. A discriminant function 

analysis of opsin expression produced three signifi-

cant functions, with function 1 explaining 53.94% of 

data variance, and functions 2 and 3 explaining 

31.63% and 11.72% of the variance, respectively 

(Fig. 2B). Function 1 is positively loaded by sws1 
and lws, negatively loaded by rh2a and rh2b, and 

separates females from males. Function 2 is loaded 

most negatively by rh2b and positively by sws1 ex-

pression. This roughly separates ovulated from 

brooding females and dominant from subordinate 

males. The DFA correctly classifies 37 total fish, 

with only 5 fish being predicted as the incorrect sex. 

Dominant and subordinate males are commonly mis-

identified as each other based on opsin expression. 

While ovulated females are distinguishable from 

brooding females (0% misidentified as brooding), 

two fish are  predicted as non-ovulated gravid.  Gravid  

females are incorrectly predicted as ovulated (two of 

eight) or brooding (three of eight), further indicating 
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Fig. 1. Opsin expression is reproductive state-dependent. Ovulated females have higher expression of sws1 (A), sws2a (B), and sws2b 
(C), compared with brooding females, with gravid females as an intermediate. There are no differences in rh2a (D) expression, but 
rh2b (E) expression is higher in subordinate males than dominant males, and in brooding females than ovulated and gravid females. 
Expression of lws (F) is not different with female reproductive state or male social status. Different lower- and upper-case letters 
represent significant differences (P < 0.05) within females and males, respectively. All data points are represented as closed circles, data 
mean as an “X,” and data median as a solid line. 
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that the transition in opsin composition happens as a 

female approaches reproductive readiness. 

In females, sws2a   expression positively correlates with 

circulating levels of both 11-KT (R   ¼ 0.469, P   ¼ 0.012) 

and estradiol (R   ¼ 0.486, P   ¼ 0.009) (Fig.   3), but there 

are no other correlations between circulating sex ste-

roids and expression of any other opsin. However, these 

correlations may be driven by differences in opsin and/ 

or circulating steroid differences among female groups, 

as there are no significant correlations within each 
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reproductive state. Further, sws1   and sws2b   expression 

positively correlate with expression of estrogen, andro-

gen, and gonadotropin system receptor (i.e., luteinizing 

hormone receptor, gonadotropin releasing hormone 

receptors) expression in the eye (P   <   0.05 for all); how-

ever, both sws1   and sws2b   are expressed at relatively low 

levels (0.31% and 2.26%, respectively) compared with 

other opsins. Expression of the other four opsins does 

not correlate with any of these reproductively-

important neuromodulatory receptors in the eye. 

Discussion   
Here, we show that opsin expression varies with fe-

male reproductive state, further demonstrating 

endocrine-mediated visual plasticity in A.   burtoni. 

We previously found that visual sensitivity varies 

with female ovulation status (Butler et al. 2019). 

Using integrative techniques, we showed that ovula-

tion status was linked to increased visual sensitivity, 

higher neural activity in the retina, higher levels of 

neuromodulatory receptors in the eye, and an in-

crease in affiliative mate-choice like behaviors. 

Here, we expand on that work to show that opsin 

expression also varies with female reproductive state, 

but in a different wavelength-dependent manner 

than that determined by electroretinograms. 

Ovulated females had higher expression of short 

wavelength sensitive opsins (sws1, sws2a, and 

sws2b) than mouthbrooding females, with gravid 

females as an intermediate between the two, suggest-

ing that as a female approaches reproductive readi-

ness and ovulates, expression of the opsin 

responsible for detecting the UV/violet/blue color 

range of light also increases. Male A.   burtoni   have 

both a blue and yellow morph, with some males 

having both blue and yellow pigmentation. Their 

fins also have iridescent-like pigments. As such, short 

wavelength sensitive opsins likely detect components 

of male body coloration, but not the red humeral 

patch often associated with reproduction. The posi-

tive significant correlation between circulating sex 

steroids and sws2a expression, the predominant op-

sin expressed in females, further suggests endocrine-

mediated plasticity in the visual system; however, 

this correlation was only significant when all females 

were combined and not within female reproductive 

states. Manipulating estrogen signaling impacted ex-

pression of cone opsins in western mosquitofish 

(Gambusia affinis) and sailfin mollies (Poecilia lati-

pinna; Friesen et al. 2017). Female mosquitofish sup-

plemented with estradiol had higher expression of 

sws2a and rh2 compared with vehicle-injected 

females, and lws expression was decreased in tamox-

ifen (estrogen receptor antagonist) treated females. 

The results presented here, and those from Friesen 

et al. (2017), suggest that circulating estradiol levels 

likely mediate opsin expression, but the effects them-

selves, as well as the opsins influenced, appear to be 

species specific. 

Using electroretinograms to measure the b-wave 

(primarily an ON-bipolar cell response) in dark-

adapted fish, we previously found that gravid females 

had increased sensitivity to 500 and 550 nm light 

stimuli compared with non-gravid recovering 

females (Butler et al. 2019). After ovulation was hor-

monally induced, we found an increase in sensitivity 

across the visual spectrum, with the largest gain in 

sensitivity in the yellow–green color range. Despite 

changes in female visual sensitivity to yellow–green 

wavelengths of light measured via ERGs, we did not 

find any changes in the predominant middle wave-

length sensitive opsins (rh2a) with female reproduc-

tive state. The difference between ERG data and 

opsin expression is not surprising. Because of using 

dark-adapted animals, it is likely that our ERGs mea-

sured a visual response that was dominated by rods, 

not cones. It is also important to note that the wave-

lengths measured by ERGs were not at the peak sen-

sitivity of each opsin. In contrast to rh2a expression, 

brooding females and subordinate males have higher 

expression of rh2b than ovulated/gravid females and 

dominant males, respectively. However, rh2b expres-

sion only comprises 0.25% of the total opsin expres-

sion, with rh2a expression over 10 times higher than 

rh2b expression. Further, past studies have suggested 

that rh2b may be a pseudogene in A. burtoni because 

of its low to nonexistent expression across develop-

mental stages and in adults (O’Quin et al. 2011). So  

the functional implications of this difference in rh2b 
expression are questionable. No other differences 
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were found with male social status, further support-

ing our previous findings that visual plasticity is 

found in female but not male A. burtoni. 

In some fishes, long wavelength sensitive opsins 

have been tied to reproductive state and sexual ma-

turity. In guppies, expression of long wavelength sen-

sitive opsins (A180, S180) increased with sexual 

maturity, and in adult fish, females had higher ex-

pression of both A180 and S180 than males (Laver 

and Taylor 2011). The authors attributed this in-

crease in red-sensitive opsins in sexually-mature 

females to their need to discriminate male red 

body coloration during mate choice. Further, andro-

gens increase lws expression in male three-spined 

sticklebacks (Shao et al. 2014). Despite these differ-

ences in lws expression in other teleosts, we found 

no reproductive state differences in lws expression in 

A. burtoni. There were no correlations between 

androgens and lws expression in females. Despite 

dominant male A. burtoni often having higher levels 

of circulating androgens compared with subordinate 

males (Maruska 2014), lws expression did not differ 

with male social status. 

When combined with our previous work on visual 

system plasticity in A. burtoni, we show that female 

reproductive state mediates visual sensitivity, likely 

through multiple different mechanisms. The changes 

in opsin expression with female reproductive state 

demonstrate that visual capabilities are modulated 

at the level of the photoreceptors, not just through 

downstream modulation or processing. While studies 

have reliably shown that hormonal systems can me-

diate sensory plasticity, the underlying mechanisms 

remain poorly understood. However, research into 

the role of estrogens in human ocular health has 

demonstrated that estrogens have protective effects 

against macular degeneration and can help prevent 

age-related decreases in photoreceptor density (Chui 

et al. 2012; Wang et al. 2017). Photoreceptors them-

selves have not been found to express sex steroid 

receptors, but estrogen receptors have been localized 

to the retinal pigmented epithelium cells (Kobayashi 

et al. 1998; Gupta et al. 2005), which signal directly 

to photoreceptor cells and play a vital role in photo-

transduction. While we and others have found an 

increase in opsin expression related to endocrine 

state, it remains unknown if this is due to an overall 

increase in the number of photoreceptors, increased 

opsin expression within cones, or a shift in opsin 

expression within a cone. Photoreceptors take several 

weeks to differentiate in goldfish (Wu et al. 2001), so  

it seems unlikely that photoreceptor density can 

change on the same rapid timescale as opsin expres-

sion. It has also been proposed that the retina has 

maximized morphology for proper lamellar packing 

and phototransduction, such that increasing lamellar 

volume (i.e., from increased opsins within a cone) 

could interfere with proper phototransduction (Wen 

et al. 2009). As such, the changes observed in opsin 

expression likely suggest that cones shift their expres-

sion from one opsin to another, which would change 

overall opsin composition of the retina leading to 

changes in spectral sensitivity. Changes in cone iden-

tity from one opsin to another have been demon-

strated in several fishes (Cheng et al. 2006, 2009; 

Flamarique et al. 2013), but remains untested in A. 
burtoni. It was previously found that middle and 

long wavelength sensitive opsins have higher diurnal 

variation than short-wavelength sensitive opsins 

(Halstenberg et al. 2005). The authors proposed 

that this could be because blue opsins are smaller, 

and therefore, potentially more stable than green and 

red opsins. Although we collected fish at the same 

time of day to avoid changes associated with time of 

day and light exposure, it is possible that diurnal 

changes in green and red opsins are greater than 

the influence of reproductive state on opsin expres-

sion. Another possibility is that the smaller size of 

short wavelength sensitive opsins allows for more 

plasticity before cones reach detrimental levels. Our 

discriminant function analyses separated males and 

females, and largely distinguished dominant from 

subordinate males and ovulated from brooding 

females, demonstrating that overall opsin composi-

tion differs based on reproductive and social state, 

but more research is still needed to identify the 

mechanism underlying these changes. As neurosci-

ence techniques continue to improve and become 

more accessible and applicable to non-model sys-

tems, future studies using these approaches will bet-

ter reveal how hormones mediate plasticity. 

In summary, high levels of parental investment 

associated with maternal mouthbrooding make re-

production extremely costly for female A. burtoni. 

After a female ovulates, she has approximately 24 h 

to find, choose, and reproduce with a male. If she is 

unsuccessful, she will pick up unfertilized eggs, and 

negate the energetic demands that went into egg pro-

duction. As such, the ability to adequately detect vi-

sual components of male courtship displays and to 

make appropriate mate choice decisions is extremely 

important in this species, and likely many others that 

cycle in and out of breeding condition. Future work 

is needed to elucidate the mechanisms of how 
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Reproductive plasticity of opsin expression 

endocrine systems modulate sensory capabilities at 

the periphery and the central processing of social 

signals. 
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