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Abstract 
Fishes use multimodal signals during both inter- and intra-sexual displays to convey infor-

mation about their sex, reproductive state, and social status. These complex behavioral dis-

plays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the 

relative role of each sensory channel in these complex multi-sensory interactions is a com-

mon focus of neuroethology. The mechanosensory lateral line system of fishes detects 

near-body water movements and is implicated in a variety of behaviors including schooling, 

rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to 

chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test 

for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific 

calcium channel antagonist and could potentially disrupt function of all superficially located 

sensory receptor cells, including those for chemosensing. Here, we examined whether 

CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three fresh-

water fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and 

the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the 

activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory 

epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain 

activation in olfactory processing regions of A. burtoni immersed in either control or cobalt 

solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfac-

tory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in 

olfactory processing regions of the brain. To our knowledge this is the first empirical evi-

dence demonstrating that the same CoCl2 treatment used to ablate the lateral line system 

also impairs olfactory function. These data have important implications for the use of CoCl2 

in future research and suggest that previous studies using CoCl2 should be reinterpreted in 

the context of both impaired mechanoreception and olfaction. 
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Introduction 

Fish constantly receive information via multiple sensory channels and the specific role of these 
different senses is a common focus of fish sensory biology and neuroethology. To examine 
what role individual senses such as vision, audition, mechanoreception, and chemoreception 
have in mediating behaviors, a typical approach is to disrupt input from a single sensory system 
(e.g. eye patches to remove visual cues) and then compare behavioral responses to those from 
undisrupted intact fish. It is extremely important, therefore, to verify that the methodology 
used to ablate/disrupt a sensory system has the desired effects on the intended sense, but also 
that it does not impair other sensory modalities or have toxicity effects. 

The mechanosensory lateral line system allows fish to receive information about their sur-
roundings through detection of near-body flow water movements relative to the skin surface 
[1–4]. This sensory system is composed of neuromasts, which are groups of support cells and 
hair cells with their hair bundles (single kinocillium and multiple rows of stereovilli) embedded 
in a gelatinous cupula [3]. Neuromasts are located either inside bony canals in the dermis 
(canal neuromasts) or on the skin surface of the fish (superficial neuromasts) [5, 6]. Mechano-
sensory cues are used during schooling [7,8], rheotaxis [7,9–11], prey detection [12–14], preda-
tor avoidance [15,16], and social interactions [17–20], and the importance of 
mechanoreception during these behaviors has been primarily examined by chemically ablating 
the lateral line system using aminoglycoside antibiotics (mechanotransduction channel 
blocker) or cobalt chloride (putative calcium channel antagonist [21–23]). While it has become 
more common for studies using chemical ablation to verify treatment efficacy in recent years, 
it is still rare for studies to examine potential effects on other sensory systems. Specifically, 
almost no lateral line studies tested for potential impacts of cobalt chloride on chemosensory 
function, an important sensory modality for many behaviors in fishes [24–27]. Without these 
verifications, however, conclusions on the specific role of mechanosensation during context-
specific behaviors are called into question. 

Across taxa, chemical signals provide crucial information for both survival (food, predators) 
and reproduction (mates, offspring) [28–36]. Because of their aquatic environment, fishes are 
constantly exposed to water-soluble compounds that are readily detected by chemosensory sys-
tems. The two primary modes of chemical detection in fishes are olfaction (smell) and gusta-
tion (taste) [24,37]. The teleost olfactory system consists of an olfactory epithelium that lies 
beneath the nares on each side of the head [38,39]. As water flows over the epithelium, odorant 
molecules bind to olfactory receptor neurons that then transmit action potentials along the 
olfactory nerve to the olfactory bulb [40,41]. From here, signals are transmitted by either the 
lateral olfactory tract (feeding information) or medial olfactory tract (social and alarm infor-
mation) to higher brain centers including those involved in feeding, social behavior, and repro-
ductive physiology [40]. Taste buds are generally located on the lips, inside the mouth, on the 
pharyngeal (gill) arch epithelium, and in some fishes on the external body surface, while soli-
tary chemosensory cells are located on the surface of the head, trunk, and tail of fishes [42–44]. 
By virtue of their location, all of these chemoreceptive cells in fishes are exposed to the aquatic 
environment, including any toxins, heavy metals, or other water-soluble compounds that are 
commonly used to chemically/pharmacologically eliminate the lateral line system, such as 
CoCl2. As a non-specific calcium channel antagonist [21–23], it is possible that CoCl2 treat-
ment also impairs superficially located chemosensory cells in addition to neuromasts of the lat-
eral line system. 

Disruption of chemosensory communication could have extreme effects on many 
fish behaviors that are crucial for survival and reproductive success. Taste is used for food 
detection [44–47], but there is little experimental evidence thus far to suggest a role in social 

PLOS ONE | DOI:10.1371/journal.pone.0159521 July 14, 2016 2 / 26  

https://www.nsfgrfp.org/
https://www.nsfgrfp.org/


CoCl2 Impairs Olfactory Systems 

communication. The olfactory system, however, mediates many behaviors including feeding, 
predator avoidance, migration, and kin recognition, and is used to detect substances released 
from conspecifics during social interactions such as aggression and courtship [24,48]. Although 
it is likely that chemosensory information is used by many fishes for survival and social interac-
tions, the relative importance of olfactory and gustatory stimuli in behaviors such as feeding in 
the dark and reproduction still needs to be evaluated on a species by species basis. Because che-
moreception is a vital sense for many fish behaviors, it is extremely important to verify that 
these systems (taste and smell) remain intact following chemical/pharmacological manipula-
tion of other sensory systems. 

The effects of heavy metals (e.g. copper, cobalt) on fish behavior and olfaction have been 
well studied due to their occurrence as environmental contaminants (reviewed in [49]). Copper 
has been extensively studied and has known detrimental effects on fish olfaction [50–53]. How-
ever, the role of cobalt remains less clear. While some studies have found altered behavior and 
olfactory function following cobalt exposure [22,54–56], other studies have found that sub-
lethal levels of cobalt had little to no impact [57,58]. It is possible that the reason for these var-
ied results is due to species-specific responses to cobalt (evidenced by the need for various 
treatment protocols: e.g. [14,17,19–21,59]) as well as differences in their exposure protocols. 
While past studies in fishes have used cobalt concentrations consistent with environmental lev-
els or short-term exposures (<1 hour) during assessment of behavioral and olfactory 
responses, no studies have tested if the same cobalt chloride treatments used to ablate the lat-
eral line system also impair the olfactory system. 

The goal of this study was to examine the effects of CoCl2 on the mechanosensory lateral 
line and olfactory systems in three freshwater fish species: an African cichlid fish (Astatotilapia 
burtoni), goldfish (Carassius auratus), and the Mexican blind cavefish (Astyanax mexicanus). 
These species were chosen because they are representatives of the three primary taxa used in 
current lateral line research (i.e. cichlids, goldfish, cavefish), and are commonly subjected to 
CoCl2 treatment. By evaluating each sensory system peripherally (assessment of vital-dye stain-
ing) and centrally (assessment of activation of brain processing regions), a better understand-
ing can be gained of the potential impacts of cobalt chloride on multiple sensory systems. 

Materials and Methods 

Experimental animals 

Adult Astatotilapia burtoni were laboratory-bred from a wild-caught stock collected from Lake 
Tanganyika, Africa in the 1970s [60], and were maintained in an environment that mimicked 
their natural conditions. A. burtoni were housed in 30L aquaria at 28–30°C on a 12L:12D diur-
nal cycle and fed cichlid flakes (AquaDine, Healdsburg, CA) once daily and supplemented with 
brine shrimp. Goldfish and cavefish were bought from local pet suppliers (Petco store #1580, 
Baton Rouge, LA; geographic coordinates: 30°25’17”N 91°09’12”W; purchased December 
2015) and PetSolutions (Beavercreek, OH; www.petsolutions.com; purchased December 2015), 
respectively. Goldfish were of mixed color morphs. Goldfish and cavefish were acclimated to 
and housed in 3L buckets containing aerated RO (reverse osmosis) water for ~2 hours before 
treatment began. RO water, as opposed to salt-supplemented water, was used because goldfish 
acclimated to and housed in cichlid-system water (i.e. RO water with salt supplementation) 
during preliminary studies appeared sluggish and some even died. However, goldfish placed in 
RO water had no adverse effects. All animals were used to examine peripheral impacts of cobalt 
chloride (CoCl2), but only A. burtoni were used to examine the effects of CoCl2 on central 
processing. All experiments were performed in accordance with the recommendations and 
guidelines stated in the National Institutes of Health (NIH) Guide for the Care and Use of 
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Laboratory Animals, 2011. The protocol was approved by the Institutional Animal Care and 
Use Committee (IACUC) at Louisiana State University, Baton Rouge, LA. 

At the end of experiments, fish were measured for standard length (SL), weighed for body 
mass (BM), and gonads were removed and weighed to calculate gonadosomatic index (GSI) as 
a measure of reproductive status [GSI = (gonad mass/BM)�100]. Animals were of mixed sex 
(A. burtoni: 34 males, 19 females; goldfish: all males; cavefish: 17 males, 7 females, 3 immature) 
and body size (A. burtoni: SL 51.019±1.397mm, BM 4.340±0.321g; goldfish: SL 36.131 
±1.170mm, BM 1.772±0.859g; cavefish: SL 29±0.959mm; BM 0.615±0.049g). None of these 
variables (BM, SL, GSI, sex) impacted fluorescence intensity of the olfactory epithelium or effi-
cacy of CoCl2 treatment (Pearson correlation: P>0.05 for all factors in all species), and did not 
differ among groups (one-way ANOVA, P>0.05 for all). 

Cobalt chloride treatment 
A. burtoni were assigned to one of four groups: two CoCl2 treatment groups to assess the 
impact of low (0.1mM CoCl2 for 3 hours) and high (2mM CoCl2 for 3 hours) doses and two 
control groups (one with and one without a calcium-chelator) to examine the impact of low-
calcium water. The two control groups together are referred to as ‘controls’ or separately as 
‘untreated-control’ (no calcium chelator) and ‘low-calcium’ (calcium chelator present). Ani-
mals assigned to the untreated-control group were immersed in normal cichlid-system water 
(RO water supplemented with Lake Tanganyika buffer to pH8.0, and salt to 300–500μS/cm; 
total calcium: 250–500μM) for 3 hours and was primarily included as a reference for DASPEI 
fluorescence quantifications of the olfactory epithelium (see below). Fish assigned to the other 
control group, low-calcium, were immersed in cichlid-system water with 1mM EGTA (ethyl-
ene glycol tetraacetic acid; calcium-chelating agent used to lower water calcium levels as done 
previously [17–19]) for 3 hours. This low-calcium control group was needed because the CoCl2 

treatment solutions are prepared in low-calcium water. CoCl2-treated fish were immersed in 
cichlid-system water containing 1mM EGTA and 0.1mM CoCl2 (low) or 2mM CoCl2 (high) 
for 3 hours. Sodium hydroxide (NaOH) was used to restore pH to 7.6–8.0 for all solutions. 
Total calcium concentrations were measured using flame emission spectroscopy, and the 
amount of free calcium was determined using freely available EGTA-Ca2+ calculators (e.g. 
http://randombio.com/egta.html; http://maxchelator.stanford.edu/CaEGTA-TS.htm). EGTA 
bound >99% of the total calcium in the cichlid-system water indicating that all EGTA-contain-
ing solutions (i.e. low-calcium, low-0.1mM CoCl2, and high-2mM CoCl2) are effectively cal-
cium-free. Individual fish were placed in glass beakers containing 500mL of the treatment 
solution and an air stone. In most freshwater fishes, immersion in 0.1mM CoCl2 for ~24 hours 
is sufficient to functionally ablate the lateral line system [52], but there is species-specific varia-
tion in treatment efficacy. In A. burtoni, immersion in 0.1mM CoCl2 for 24 hours results in 
minimal ablation of the lateral line neuromasts, whereas an increased dose of 2mM CoCl2 for 3 
hours completely ablates cranial canal and superficial neuromasts [17]. In the peacock cichlid, 
however, treatment with 0.1mM CoCl2 for 3 hours ablates the lateral line system [14,61]. 
Because of this, both low (0.1mM for 3 hours) and high (2mM for 3 hours) CoCl2 treatments 
were tested. Controls for treatment efficacy and toxicity were previously reported for treatment 
with 0.1mM CoCl2 and 2mM CoCl2 in A. burtoni [17]. 

Goldfish and cavefish were assigned to one of two groups: control or 0.1mM CoCl2 treat-
ment. Groups of 6–8 fish were immersed in 1 L of normal RO water (control) or 0.1mM CoCl2 

prepared in RO water for 24 hours (CoCl2-treated). This dose of CoCl2 was chosen because it 
was shown previously to ablate the lateral line system of goldfish and cavefish, while a higher 
dose (e.g. 2mM) is lethal for both [21,55,59,62]. The lack of salt in the RO water can cause 
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some ionic imbalances for the fish, but since both the control and 0.1mM CoCl2 groups were 
in RO water, this did not affect interpretation of the data. In addition, a low-calcium control 
was not used for goldfish or cavefish because RO water already contained <10μm free calcium. 

Individuals of all fish species ate normally immediately after treatment, had no excess 
mucus production, and showed normal behaviors, swimming patterns, and coloration. In addi-
tion, no fish died as a result of any of the CoCl2 treatments. Several CoCl2-treated A. burtoni, 
goldfish, and cavefish were allowed to live in normal cichlid-system (A. burtoni) or RO (gold-
fish and cavefish) water for several weeks after treatment and there were no delayed toxicity 
effects in any of these individuals. 

DASPEI staining and imaging 

To visualize the impact of the CoCl2 treatment on the olfactory epithelium, fish were stained 
with the fluorescent vital dye, DASPEI (2-[4-(dimethylamino)styryl-N-ethylpyridinium iodine; 
Invitrogen Molecular Probes). DASPEI is a mitochondrial stain taken up by metabolically 
active cells, can be used as a measure of living or viable cells within a tissue, and its fluorescence 
intensity is qualitatively correlated with mitochondria activity and number [63]. Other styryl 
dyes, such as FM1-43, have been show to enter sensory cells via mechanotransduction and ion 
channels [64], and their fluorescence intensity can be reflective of the amount of dye taken into 
and retained by the cells. Although we are unsure if the measured fluorescence intensity is rep-
resentative of the mitochondrial activity or intake through ion channels, the observed fluores-
cence acts as a measure of overall cell activity and will only stain alive, functioning cells. Fish 
were immersed in 0.008% DASPEI in RO water for 20 minutes to visualize lateral line neuro-
masts and cells of the olfactory epithelium. Following staining and tissue collection (see below), 
all animals were imaged using an eGFP filter set (excitation filter 485/20; 525 LP filter) on a stereo 
dissection microscope (SteREO Lumar V.12, Zeiss) and images were acquired with Zen Pro soft-
ware. A. burtoni were stained in groups that always included at least one untreated-control ani-
mal to account for any differences in batches of DASPEI solutions and replacement of the 
fluorescent light source half way through the A. burtoni data collection, but cavefish and goldfish 
were all stained at one time in the same DASPEI solution to reduce staining variability. 

The olfactory epithelia of DASPEI-stained fish were exposed by gently removing the over-
laying tissue around the nares. Extended depth of field imaging was used to obtain images of 
the entire olfactory epithelium. Images were taken at the same magnification and exposure for 
all animals that were stained together. All animals were left in a dark container prior to imag-
ing, and all images were taken within 5 minutes of exposing fish to light to avoid photobleach-
ing. Fish were imaged in random order and imaging order had no impact on fluorescence 
intensity (Pearson correlation: A. burtoni: R = 0.078, P = 0.599; goldfish: R = -0.075, P = 0.700; 
cavefish: R = 0.145, P = 0.469). 

To investigate if olfactory abilities recover after CoCl2 treatment, we examined all fish spe-
cies immediately following treatment and 18 hours later. Some studies using CoCl2 to chemi-
cally ablate the lateral line system, especially those using cichlids, allow the fish to recover after 
treatment (from 2 [14,61] to 18 hours [17]). To better mimic these studies, we allowed fish to 
recover for 18 hours post-treatment, as done in [17]. Further, this allowed us to examine if the 
impact of CoCl2 on the olfactory system would be alleviated after recovery or if impairment 
persisted after treatment, which to our knowledge, has never been tested. Fish assigned to the 
recovery groups were placed in either normal cichlid-system (A. burtoni; [free Ca2+] = 250– 
500μM) or RO (goldfish and cavefish; [free Ca2+] <10μM) water for ~18 hours after which 
they were quickly netted from their tank and handled as described above for DASPEI staining 
and imaging. 
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Following alignment of extended depth of field images on the stereomicroscope, artifacts 
(small white dots) appeared in all aligned images. Artifacts were consistent across images (each 
image had 2–3) and were included in fluorescence intensity quantifications. For visualization 
purposes in Figs 1–3, artifacts were removed in Photoshop CS6. All images had the same color 
balance and contrast settings applied. 

Fluorescence intensity quantification 

Once EDF stacked images of the olfactory epithelium were acquired, a region of interest 
(ROI) was outlined as the circumference of the olfactory epithelium. Zen Pro software was 
then used to calculate fluorescence intensity (FI) for the region of interest. Background 
fluorescence was accounted for by subtracting the FI of the background from the FI of the 
region of interest. This normalizes fluorescence values by accounting for individual vari-
ability in DASPEI staining. To eliminate inter-group variability in A. burtoni, each value 
was divided by the FI of the untreated-control animal (relative FI = FI of subject divided by 
FI of untreated-control) to give a relative FI for each fish such that a value >1 indicates  
greater fluorescence and a value <1 signifies reduced fluorescence compared to untreated-
control animals. Consequently,  all untreated-control animals had a relative fluorescence 
value of 1. The low-calcium fish could not serve as the reference animal as this would 
have excluded them from statistical analyses. Imaging and quantification was done unilater-
ally and blind to the animal’s group. ROI area had no impact on FI measurements (Pearson 
correlation: A. burtoni: R = -0.097, P = 0.511; goldfish: R = 0.145, P = 0.452; cavefish: 
R = 0.372, P = 0.056). 

Since the goal of this study was to measure effects of CoCl2 on the olfactory system, we only 
qualitatively examined DASPEI staining in the lateral line neuromasts. We were unable to 
quantify neuromast fluorescence intensity because handling during brain collection removed 
superficial neuromasts and the tissue above canal neuromasts was difficult to image through, 
which produced inconsistent fluorescence intensities. Instead, we refer readers to previous 
research documenting the impact of similar cobalt chloride concentrations on lateral line func-
tion in all three species [17,18,55,59,65]. 

Tissue collection 

DASPEI fluorescence intensity provides information on the impact of CoCl2 treatment on 
peripheral tissues (i.e. olfactory epithelium) but provides no information on central processing. 
To test whether CoCl2 treatment also had central effects (i.e. decreased processing of chemo-
sensory cues) in A. burtoni we used in situ hybridization for the immediate early gene cfos as a 
proxy for neural activation (see details below) in the same animals used for DASPEI imaging. 
Following DASPEI staining, all fish were quickly netted from the staining solution, anesthe-
tized in ice cold fish water, measured as described above, and killed by rapid cervical transec-
tion. Heads from goldfish and cavefish were immediately placed in dark containers of RO 
water until imaging. For A. burtoni, the brains were removed and the heads placed in a dark 
container of RO water until imaging. Dissections took less than 5 minutes per animal and 
order of dissection was randomized and had no impact on DASPEI or cfos staining (P>0.05 
for all groups). A. burtoni brains were fixed overnight at 4°C in 4% paraformaldehyde (PFA) in 
1x phosphate-buffered saline (1xPBS), rinsed for 24 hours in 1xPBS, and cryoprotected over-
night in 30% sucrose in 1xPBS. Brains were then embedded in OCT media (TissueTek), sec-
tioned in the transverse plane on a cryostat at 20μm, and collected onto 2 alternate sets of 
charged slides (VWR superfrost plus). Slides were dried flat at room temperature for 2 days 
prior to storage at -80°C. 
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Fig 1. DASPEI staining verified ablation of the lateral line neuromasts and revealed impacts on the 
olfactory epithelium in three freshwater fish species. Representative photomicrographs of: the cichlid A. 
burtoni immersed in untreated-control (A), low-calcium (B), 0.1mM CoCl2 (C), and 2mM CoCl2 (D) solutions; 
goldfish C. auratus treated with control (E) and 0.1mM CoCl2 (F) solutions; and cavefish A. mexicanus 
immersed in control (G) and 0.1mM CoCl2 (H) solutions. A-D were taken 18-hours post-treatment and E-H 
were taken immediately after treatment. Small green dots are DASPEI-labeled neuromasts and 
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Fig 2. Cobalt chloride treatment reduces DASPEI staining in the olfactory epithelium of the cichlid A. burtoni. A) Representative 
photomicrographs of DASPEI-stained olfactory epithelia from A. burtoni immersed in untreated-control water, low-calcium water, low-0.1mM 
CoCl2, and high-2mM CoCl2 immediately after treatment and 18-hours post-treatment. B) Quantification of DASPEI fluorescence intensity of the 
olfactory epithelium. Fluorescence intensity was normalized to untreated-controls such that a value = 1 indicates the same fluorescence, >1 
indicates greater fluorescence, and <1 indicates reduced fluorescence relative to the untreated-controls. Different letters indicate statistical 
significance at P<0.05. Tukey’s box plots were used to represent data (N = 6 fish per group): data median is represented by a line and data 
mean by an open circle, the box extends to the furthest data points within the 25th and 75th percentile, and whiskers extend to the furthest data 
points not considered outliers. Absence of whiskers indicates absence of data points outside of the 25th/75th percentile. Outliers are 
represented by closed circles. Scale bars in A represent 200μm. Abbreviations: C: caudal, L: lateral, M: medial, R: rostral. 
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representative superficial and canal neuromasts are indicated with yellow and white arrows, respectively. 
Red arrows indicate the olfactory epithelium, which is DASPEI-stained in controls but not in cobalt-treated 
fish. Scale bars represent 2 mm. Abbreviations: E, eye/eye socket; M, mouth. 

doi:10.1371/journal.pone.0159521.g001 

Preparation of DIG-labeled riboprobe and in situ hybridization 

The immediate early gene cfos can be used as a marker of neural activation and has been suc-
cessfully used for this purpose in A. burtoni [18]. Cfos is a transcription factor that is rapidly 
induced following a variety of stimuli, and several studies show that genomic responses mea-
sured via immediate early gene expression correlates with neural activity (i.e. action potentials) 
measured using electrophysiological techniques (e.g. [66–68]). To visualize cfos mRNA in the 
brain, we used chromogenic in situ hybridization with a riboprobe specific to the A. burtoni 
cfos mRNA sequence as previously described [18]. Briefly, commercially synthesized A. burtoni 

doi:10.1371/journal.pone.0159521.g002 
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Fig 3. Goldfish and cavefish treated with CoCl2 have reduced DASPEI staining of the olfactory 
epithelium. Representative photomicrographs of the olfactory epithelium of control (A) and CoCl2-treated (B) 
goldfish, C. auratus. C) Quantification of DASPEI fluorescence intensity of the olfactory epithelium of control 
and CoCl2-treated C. auratus (N = 7–8 fish per group). Representative photographs of the olfactory 
epithelium of control (D) and CoCl2-treated (E) Mexican blind cavefish, A. mexicanus. F) Quantification of 
DASPEI fluorescence intensity of the olfactory epithelium of control and CoCl2-treated A. mexicanus (N = 6–7 
fish per group). Different letters indicate statistical significance at P<0.05. Scale bars in A, B, D, and E 
represent 200μm. See Fig 2 for box plot descriptions. Abbreviations: C: caudal, L: lateral, M: medial, R: 
rostral. Orientation in A also applies to images in B, C, and D. 
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doi:10.1371/journal.pone.0159521.g003 

cfos primers (Life Technologies; forward primer: 5’-agagaactgatcgggagcagcgct-3’; reverse 
primer: 5’-caggttgggatatcattctgcagg-3’) were used to generate a probe template by PCR amplifi-
cation of brain cDNA, and a transcription reaction was used to incorporate DIG-labeled nucle-
otides into the purified PCR template before probe purification. The probe was diluted 1:5 in 
hybridization buffer and stored at -20°C until use. Probe specificity was previously demon-
strated [18]. 
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In situ hybridization was performed to visualize and quantify activation differences in che-
mosensory processing regions of the brain between control and CoCl2-treated A. burtoni as 
previously described [18,69]. Briefly, slides of cryosectioned brains were prepared by sequential 
washes at room temperature of 1xPBS, 4% PFA, 1xPBS, proteinase K solution, 1xPBS, 4% PFA, 
1xPBS, milliQ water, 0.25% pure acetic anhydride in 0.1M triethanolamine-HCl pH 8.0, and 
1xPBS. Slides were then incubated in pre-warmed hybridization buffer at 60°C for 3 hours 
prior to hybridization with cfos riboprobe in a humidified chamber at 60°C for 12–16 hours. 
After stringency washes were performed at 60°C, slides were washed at room temperature in 
maleate buffer with tween-20 (MABT), blocked in MABT with 2% bovine serum albumin for 3 
hours at room temperature, and incubated in alkaline-phosphatase-conjugated anti-DIG Fab 
fragments overnight at 4°C in a humidified chamber. Slides were then rinsed in MABT at 
room temperature, incubated in alkaline phosphatase buffer, and developed with nitro-blue 
tetrazolium / 5-bromo-4-chloro-3’-indolyphosphate (NBT/BCIP) substrate at 37°C in the dark 
for 2.5hrs. Slides were then rinsed in 1xPBS, fixed in 4% PFA, washed with 1xPBS and cover-
slipped with aquamount media. 

Quantification of brain activation 

To quantify differences in cfos staining, slides were visualized on a Nikon Eclipse Ni micro-
scope and photographs were taken with a color digital camera controlled by Nikon Elements 
software. Brightfield and phase contrast were used to visualize neuroanatomical markers and 
brain nuclei in relation to DIG-labeled cells. A cresyl violet-stained A. burtoni reference brain, 
A. burtoni brain atlas, and other relevant papers [18,70–72] were used to identify candidate 
regions. Stereotactical and neuroanatomical markers were used to designate the beginning and 
end of each quantified region to ensure consistency across animals. 

For cfos quantification in the internal cellular layer of the olfactory bulbs (ICL), we used 
ImageJ to determine the percent area of the ICL covered by cfos-stained cells (protocol modi-
fied from the “Quantifying Stained Liver Tissue” protocol available on the ImageJ website, 
imagej.nih.gov). This method, as opposed to optical density, accounts for the number of 
stained cells, not the intensity of the staining, which can vary between in situs. All images were 
taken with the same magnification, exposure, and white balance settings on the highest resolu-
tion. Images were uploaded into ImageJ and split into their RGB components (3 images). 
Threshold was lowered until it reached the edges of the cells, producing a value equal to the 
percent of the ICL covered by staining. This was done for each of the RGB components and a 
relative staining value was calculated by averaging the percent of the ICL area stained in the red 
and green channels. The blue channel was not used because in situ hybridization occasionally 
produced a light blue background which impaired proper quantification in the blue channel. 
We analyzed the RGB components instead of single greyscale image because background levels 
affected results obtained from greyscale images. Greyscale images with high background 
required higher threshold values to distinguish cell borders which resulted in skewed percent-
stained values. 

For all other brain nuclei, cell density was calculated as previously described [18]. Images 
were taken at the highest magnification that encompassed the entire area of interest. Nuclei 
borders were first outlined and then 50μm x 50μm gridlines were applied to each image. The 
number of cfos-stained cells in five randomly selected boxes per section was quantified, and cell 
density was calculated by dividing the number of cells within the boxes by the area of the 
boxes. Four consecutive sections were quantified for each region and averaged together for a 
cell density value of that region in a particular animal. We quantified cfos expression in the pos-
terior part of the dorsal telencephalon (Dp) and the rostral portion of the dorsal part of the 
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lateral zone of the dorsal telencephalon (Dl-dr). The Dp receives direct input from the olfactory 
bulb, is the putative homolog of the mammalian piriform cortex, and Dp neural activation is 
dependent on olfactory input [73]. Cfos staining in the Dl-dr was measured as a control 
because it is not known to be directly involved in olfactory processing and is located in close 
proximity to the olfactory bulbs. 

Statistics 

See supporting information files for raw data for each species (S1 Dataset). One-way ANOVAs 
were used to examine differences in standard length, body mass, gonadosomatic index, and 
other characteristics among groups. Two-way ANOVAs were used to examine the impact of 
treatment (control vs cobalt) and timing (immediate vs recovery) in each species. Because the 
untreated-control A. burtoni data were used to normalize the DASPEI fluorescence data, they 
are excluded from analysis on the olfactory epithelium, but are included in all other analyses. 
Pearson correlations were used to examine if any variable (e.g. imaging order, fish size) 
impacted DASPEI fluorescence intensity of the olfactory epithelium. In addition, Pearson cor-
relations were used to test for relationships between DASPEI staining in the olfactory epithe-
lium of A. burtoni and central neural activation measured via cfos-stained cell density. In cases 
where assumptions of normality or equal variance were not met, data were transformed prior 
to analysis. 

Results 

CoCl2 treatment efficacy on the lateral line system 

Low-calcium water had no effect on DASPEI staining of the lateral line system in A. burtoni 
(Fig 1A and 1B). The low-0.1mM CoCl2 treatment had minimal effects on A. burtoni lateral 
line neuromasts despite its effectiveness at ablating the peacock cichlid lateral line system 
[14,62]; whereas the high-2mM CoCl2 treatment ablated >90% of cranial canal and superficial 
neuromasts (Fig 1C and 1D). Extending the treatment time to 24 hours instead of 3 hours, as 
used here, had no increased effect on neuromast ablation, so only the 3-hour exposure was 
used. Treatment with 0.1mM CoCl2 for 24 hours completely ablated superficial and canal neu-
romasts of both goldfish and cavefish (Fig 1E–1H). 

DASPEI staining of olfactory epithelium 

To examine the impact of cobalt chloride treatment on cells of the olfactory epithelium (OE), 
we quantified fluorescence intensity of DASPEI-stained olfactory epithelium in CoCl2-treated 
and control animals immediately following treatment and 18-hours post-treatment. In A. bur-
toni, fluorescence intensity was relative to an untreated-control animal for each batch of DAS-
PEI staining, meaning that all untreated-control animals have a relative fluorescence value of 1. 
A value greater than 1 signifies higher fluorescence while a value less than 1 indicates reduced 
fluorescence relative to the untreated-control. Immediately after treatment, low-calcium-
treated A. burtoni had similar fluorescence intensity (0.895±0.064; mean±s.e.m.) to the 
untreated-control, but fish treated with CoCl2 had increased DASPEI fluorescence of the olfac-
tory epithelium (low: 1.493±0.305; high: 1.848±0.240; Fig 2). Although CoCl2 treatment caused 
an initial increase in DASPEI fluorescence relative to controls, after an 18-hour recovery the 
relative DASPEI intensity was decreased in a dose-dependent fashion (low: 0.553±0.065; high: 
0.323±0.056; (2 way ANOVA: treatment: F = 0.303, P = 0.832; timing: F = 41.822, P<0.001; 
treatment x timing: F = 10.952, P<0.001). 
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Fig 4. Cobalt chloride-treated Astatotilapia burtoni have reduced cfos staining in the olfactory bulb. A) 
Animals treated with cobalt chloride have reduced cfos staining in the internal cellular layer of the olfactory bulb 
compared to untreated-control and low-calcium fish (N = 4–6 fish for each group). Photomicrographs of cfos staining 
(purple label) in the olfactory bulbs of representative untreated-control (B), low-calcium (C), low-0.1mM CoCl2-
treated (D), and high-2mM CoCl2-treated (E) fish. Arrows indicate internal cellular layer (ICL) of the olfactory bulb. 
Different letters represent statistical significance at P<0.05. Scale bars in B-E represent 100μm. See Fig 2 legend for 
box plot descriptions. 

CoCl2 Impairs Olfactory Systems 

Goldfish and cavefish treated with 0.1mM cobalt chloride for 24 hours had decreased fluo-
rescence of the olfactory epithelium both immediately after treatment and 18-hours post-treat-
ment compared to controls (Fig 3; goldfish, treatment: F = 64.461, P<0.001; timing: 
F = 0.0462, P = 0.832; cavefish, treatment: F = 108.242, P<0.001; timing: F = 5.524, P = 0.028, 
treatment x timing: F = 2.499, P = 0.128). 

Neural activation is reduced in chemosensory processing regions after 
CoCl2 treatment in A. burtoni 
We collected brains from A. burtoni immersed in untreated-control, low-calcium, low cobalt 
(0.1mM for 3 hours), and high cobalt (2mM for 3 hours) solutions and stained them for the 
immediate early gene cfos as a proxy for neural activation. Cfos-stained cell density can be used 
as a measure of how active that brain region is such that greater numbers of cfos-stained cells 
indicates higher overall activation within a brain region. CoCl2-treated animals had reduced 
cfos staining (i.e. activation) in the internal cellular layer of the olfactory bulbs immediately fol-
lowing treatment compared to untreated-control and low-calcium animals, suggesting that 
olfaction was impaired immediately following CoCl2 treatment despite the increased DASPEI 
staining (Fig 4). Cfos-staining reduction was concentration-dependent, such that fish treated 
with high-2mM CoCl2 had fewer cfos-stained cells than fish treated with low-0.1mM CoCl2 

(treatment: F = 40.944, P<0.001; timing: F = 7.705, P = 0.009, treatment x timing: F = 2.306, 
P = 0.095). Interestingly, 18-hours post-treatment, A. burtoni treated with low-0.1mM CoCl2 

had similar cfos staining to the low-calcium animals, but both were lower than the untreated-
control animals, indicating that both had reduced activation. Fish treated with high-2mM 
CoCl2 still had drastically reduced cfos staining at 18-hours post-treatment indicating that this 
higher dose had prolonged impacts on olfactory functions. 

Olfactory receptor neurons in the olfactory epithelium project to the olfactory bulb where 
they synapse with mitral [73,74] and tuft cells [75]. The olfactory bulb primarily projects to the 

doi:10.1371/journal.pone.0159521.g004 
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Fig 5. Cobalt chloride-treated Astatotilapia burtoni have lower densities of cfos-stained cells in the posterior 
part of the dorsal telencephalon (Dp) at 18-hours post-treatment. A) A. burtoni treated with high-2mM CoCl2 have 
fewer cfos-stained cells in the Dp 18-hours post-treatment but not immediately following treatment (N = 4–6 fish for 
each group). Photomicrographs of cfos staining in the Dp of untreated-control (B), low-calcium (C), low-0.1mM CoCl2-
treated (D), and high-2mM CoCl2-treated (E) fish allowed to recover for 18 hours. Different letters represent statistical 
significance at P<0.05. Scale bars in B-E represent 100m. See Fig 2 legend for box plot descriptions. Abbreviations: E,  
entopeduncular nucleus; Dp, posterior part of the dorsal telencephalon; Vp, postcommissural nucleus of the ventral 
telencephalon. 
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posterior part of the dorsal telencephalon (Dp). While there was quite a bit of variability in cfos 
staining in the Dp, fish treated with high-2mM CoCl2 had fewer cfos-stained cells compared to 
untreated-control, low-calcium, and low-0.1mM CoCl2 fish (Fig 5; treatment: F = 9.683, 
P = 0<0.001, timing: F = 1.323, P = 0.259, treatment x timing: F = 1.782, P = 0.172). This effect 
is most evident in the recovery animals, where the high-2mM treated animals have only a frac-
tion of the brain activation of the other groups. This indicates that in addition to the initial syn-
apse in the olfactory bulbs, cobalt chloride treatment affects upstream olfactory processing 
within the telencephalon. 

The rostral portion of the dorsal part of the lateral zone of the dorsal telencephalon (Dl-dr) 
was selected as a control region because it is not known to be directly involved in olfactory pro-
cessing, and its close proximity to the olfactory bulbs allowed quantification on the same brain 
sections. Dl-dr cfos-stained cell densities were similar across all treatment and timing groups 
(Fig 6; treatment: F = 2.300, P = 0.097; timing: F = 1.473, P = 0.234, timing x treatment: 
F = 0.007, P = 0.999) indicating that cobalt-treated animals did not have a generalized reduc-
tion in brain activation, but rather, the reduction was specific to regions involved in olfactory 
and lateral line processing. 

To further examine whether fluorescence intensity of the olfactory epithelium is an ade-
quate proxy of activity, we tested for correlations between DASPEI staining of the olfactory epi-
thelium and cfos staining in the olfactory bulbs, Dp, and control Dl-dr within the same 
individual animals (Table 1, Fig 7). Immediately following treatment, DASPEI staining of the 
OE was negatively correlated with cfos staining in the olfactory bulb (R = -0.509, P = 0.026), 
and cfos staining in the olfactory bulbs and Dp was positively correlated (R = 0.490, P = 0.046). 
In animals that were allowed to recover, DASPEI staining of the OE was positively correlated 
with cfos staining in the olfactory bulb (R = 0.795, P<0.001) and in the Dp (R = 0.684, 
P<0.001), and cfos staining in the olfactory bulb and Dp were positively correlated with each 

doi:10.1371/journal.pone.0159521.g005 
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Fig 6. CoCl2-treated Astatotilapia burtoni had similar cfos staining in a control brain region that is not known to 
process olfactory information. A) A. burtoni immersed in untreated-control, low-calcium, low-0.1mM CoCl2, and 
high-2mM CoCl2 solutions had similar numbers of cfos-stained cells in the Dl-dr indicating that CoCl2 treatment did not 
affect overall brain activation levels (N = 4–6 fish for each group). Photomicrographs of cfos staining in the Dl-dr of 
untreated-control (B), low-calcium (C), low-0.1mM CoCl2-treated (D), and high-2mM CoCl2-treated (E) fish allowed to 
recover for 18-hours Same letters represent no statistical significance at P<0.05. Scale bars in B-E represent 
10000B0035m. See Fig 2 legend for box plot descriptions. Abbreviations: Dl-dr, rostral portion of the dorsal part of the 
lateral zone of the dorsal telencephalon; Dl-v, ventral part of the lateral zone of the dorsal telencephalon; ICL, internal 
cellular layer of the olfactory bulb. 
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doi:10.1371/journal.pone.0159521.g006 

other (R = 0.824, P<0.001). Cfos-stained cell densities in the Dl-dr did not correlate with cfos 
staining in other brain regions or with DASPEI fluorescence intensity of the olfactory epithe-
lium (P>0.05 for all). 

Discussion 

We show that treatment with the chemical compound cobalt chloride, which is traditionally 
used to selectively ablate the mechanosensory lateral line system, also affects olfaction. Periph-
eral effects were verified with DASPEI staining of the olfactory epithelium in three different 
freshwater fish species historically used for lateral line research, a cichlid fish Astatotilapia bur-
toni, goldfish, and the Mexican blind cavefish. Although previous research suggested that sub-
lethal cobalt doses have no impact on olfaction [57,58], our data show that the commonly used 
dose of 0.1mM CoCl2 for 24 hours had profound impacts on the olfactory system of both 

Table 1. Pearson correlation of OE DASPEI-staining and brain cfos-staining in A. burtoni. 

Immediate cfos OB cfos Dp cfos Dl Recovery cfos OB cfos Dp cfos Dl 

FI OE 0.286 

0.208 

cfos OB R 0.490 0.081 cfos OB R 0.824 0.083 

R -0.509 0.069 -0.177 FI OE R 0.795 0.684 

P 0.026 0.793 0.497 P <0.001 <0.001 

R -0.056 cfos Dp R

P 0.827 P

P 0.046 0.758 P <0.001 0.714 

cfos Dp 0.085 

0.723 

Bold indicates significance at P<0.05. Abbreviations: Dl: rostral portion of the dorsal part of the lateral zone of the dorsal telencephalon; Dp: posterior part of 

the dorsal telencephalon, FI: fluorescence intensity; OB: olfactory bulb; OE: olfactory epithelium. 

doi:10.1371/journal.pone.0159521.t001 
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Fig 7. Correlations between fluorescence intensity of the olfactory epithelium and cfos-staining in the 
brain of the cichlid A. burtoni. (A-B) DASPEI-stained fluorescence intensity of the olfactory epithelium is 
negatively correlated with cfos-staining in the olfactory bulb (A) and posterior portion of the dorsal 
telencephalon (Dp, B) of fish imaged immediately after treatment (red), but positively correlated in fish 
allowed to recovery for 18 hours (blue). (C) cfos-staining in the olfactory bulb and Dp are positively correlated 

PLOS ONE | DOI:10.1371/journal.pone.0159521 July 14, 2016 15 / 26 



CoCl2 Impairs Olfactory Systems 

immediately after and at 18-hours after CoCl2-treatment. See Table 1 for correlation coefficients and p-
values. 

doi:10.1371/journal.pone.0159521.g007 

goldfish and cavefish. Despite little effect of the low-0.1mM CoCl2 treatment (for 3 hours) on 
DASPEI staining of lateral line neuromasts, it and the high-2mM CoCl2 treatment impaired 
the olfactory system in A. burtoni. In addition to deleterious effects on the olfactory epithelium 
of all three species, we found that CoCl2-treated A. burtoni had reduced neural activation (mea-
sured via immediate early gene expression) in olfactory processing regions of the brain. Our 
results demonstrate that in addition to ablating the lateral line system of fishes, CoCl2 treat-
ment has significant negative effects on the olfactory system. This discovery warrants some re-
evaluation of past research on behavioral functions attributed to the mechanosensory system, 
particularly those involving contexts where impaired chemoreception is relevant, such as feed-
ing and social interactions. 

Heavy metal toxicity and impacts on chemosensory systems 

Exposure to the metal cobalt chloride had negative effects on the olfactory system of goldfish, 
cavefish, and the cichlid. Heavy metals are known to have toxicity effects on olfaction in fishes 
(reviewed in [49]). Because dissolved copper is a common environmental contaminant, it is the 
focus of most research examining the impact of heavy metals on fish behavior and chemosen-
sory functions. For example, fish exposed to copper-contaminated water show altered behav-
ioral states and actively avoided high copper concentrations [54]. In addition, dissolved-copper 
causes cell death in lateral line neuromasts and cells of the olfactory epithelium [50–53,76]. 
Copper exposure also reduces the response of the olfactory bulb to amino acids, which are rep-
resentative of feeding cues [77]. While the impact of copper on chemosensory function has 
been studied, the impact of cobalt is less clear. Hansen et al (1999) found that Chinook salmon 
(Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) avoided water contam-
inated with sub-lethal concentrations of dissolved cobalt [54], and Janssen showed that high 
(2mM) CoCl2 doses caused altered swimming behavior and increased mucus production in the 
Mexican blind cavefish [55]. 

Several studies using cobalt chloride to chemically ablate the lateral line system cite previous 
research from two studies as evidence that CoCl2 treatment does not affect olfaction. First, 
Yoshii and Kurihara (1983) recorded amino acid-evoked olfactory bulb electrical responses 
while perfusing various cation-containing solutions over the olfactory epithelium and found 
that responses to amino acids were unaffected by the presence of 0.1mM Co2+ in their perfu-
sion solution in carp (Cyprinus carpio), rainbow trout (O. mykiss), and bullfrog [58]. In addi-
tion, Brown (1982) stated that cobalt only inhibited olfactory bulbar electrical activity at 
concentrations that exceeded its lethal limit [57]. The conclusion of these previous two studies 
was that sub-lethal doses of CoCl2 did not impair olfactory function. Although both of these 
experiments are commonly referenced as evidence that CoCl2 treatment does not impair olfac-
tion, it is important to note that their experimental conditions drastically differed from most 
studies that use CoCl2 to ablate the lateral line system. For example, the simple amino acids 
tested in these studies are very different from more complex chemicals associated with chemo-
sensory communication. In addition, these two studies only perfused the cobalt solution over 
the olfactory epithelium for the duration of the experiment (typically <2 hours); whereas, most 
behavioral studies using CoCl2 leave animals in the CoCl2 solution for extended periods of 
time (up to 24 hours). Cobalt, which is noted for its delayed lethal effect [78], could also have a 
delayed impact on olfaction. For example, the studies by Yoshii and Kurihara (1983) and 
Brown (1982) only tested the impact of cobalt immediately after treatment, but our results 
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indicate that its impact on olfaction continues even when fish are placed into cobalt-free solu-
tions following a short 3-hour treatment. We hypothesize that this delayed effect is due to 
cobalt accumulation on the olfactory epithelium and axonal transport to the olfactory bulb or 
other upstream targets. In contrast to the studies by Brown (1982) and Yoshii and Karihara 
(1983), Schmachtenberg (2006) found that 2mM cobalt chloride blocked calcium influx in 
crypt cells (an olfactory receptor neuron type thought to detect pheromones [79]) of the olfac-
tory epithelium in Pacific jack mackerel Trachurus symmetricus [22]. Because of experimental 
differences and species variability, it is important to test the impact of CoCl2 treatment on 
olfaction in a setting that mimics its use in studies on the lateral line system. 

CoCl2-treatment impairs olfaction in freshwater fish 

DASPEI is primarily used to verify treatment efficacy of aminoglycosides and CoCl2 on neuro-
masts of the lateral line system; however, it also stains many other neural and non-neural cell 
types [63]. Although an exact uptake mechanism remains unknown, cells must be metaboli-
cally active to take in the mitochondrial dye, and metabolic activity is correlated with fluores-
cence intensity [63]. Meyers et al (2003) found that a similar styryl dye, FM1-43, is rapidly 
taken up by cells through mechanotransduction and ion channels and more slowly by endocy-
tosis [64], indicating that only alive, functioning cells will stain with FM1-43. In addition to 
viewing neuromasts with DASPEI staining, we quantified DASPEI-stained fluorescence inten-
sity of the olfactory epithelium. To our knowledge this is the first experiment to use DASPEI to 
examine olfactory function via staining of the olfactory epithelium. This technique is simple 
and quick, and can be easily done when examining treatment efficacy on lateral line neuro-
masts to simultaneously test for and report data on olfactory effects. 

In the present study, CoCl2-treated A. burtoni had an initial increase in DASPEI-staining of 
the olfactory epithelium, which is likely reflective of increased cellular activity. As a calcium 
channel antagonist, high cobalt concentrations can alter intracellular calcium levels. It is possi-
ble that upon this imbalance, altered calcium-dependent mitochondrial activity or increased 
ion channel activity could result in increased dye-uptake [63]. After prolonged calcium deficits 
and altered metabolic activity, however, cells begin to die, resulting in little to no DASPEI 
uptake, which is reflective of the decreased fluorescence intensity in all CoCl2-treated goldfish, 
cavefish, and in A. burtoni imaged 18-hours post-treatment. Because of the extended treatment 
for goldfish and cavefish (24-hours vs 3-hours for A. burtoni), this initial increased cellular 
activity (i.e. increased fluorescence) had likely already occurred by the end of treatment and 
was therefore not detected at the immediate sampling point. 

Despite the initial increase in DASPEI staining of the olfactory epithelium in A. burtoni, 
olfaction was already impaired, as evident by the reduced cfos staining in the olfactory bulb of 
CoCl2-treated fish. Neural activation was concentration-dependent such that A. burtoni treated 
with low-0.1mM CoCl2 had more cfos staining in the olfactory bulbs than fish treated with 
high-2mM CoCl2, and both had lower activation than control animals. Interestingly, when 
examined 18-hours post-treatment, animals treated with low-0.1mM CoCl2 had similar cfos-
staining to the low-calcium animals but both were lower than untreated-control fish. The 
decreased activation observed in low-calcium fish could be an artifact of the differences in the 
overnight recovery environment or a result of the low-calcium treatment solution [80,81]. As 
the low-calcium and untreated-control animals did not differ in any other measure (DASPEI 
staining intensity or cfos-stained cell density in the Dp), it is likely not a result of the calcium-
free solution, although more research is still needed to fully understand how calcium-free solu-
tions might impair sensory function. At 18-hours post-treatment, fish treated with high-2mM 
CoCl2 still had reduced activation in the olfactory bulb, further supporting the hypothesis that 
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olfaction does not recover even after 18 hours in a calcium-rich solution (250–500μM). This is 
significant because this is within the time frame that most behavioral tests on lateral line func-
tion are conducted. 

Cichlids treated with high-2mM CoCl2 had reduced staining in the Dp at 18-hours post-
treatment but not immediately following treatment. It is possible for cobalt to accumulate on 
the olfactory epithelium, be taken into the cells, and then transported to the olfactory bulb 
[82]. In fact, cobalt was previously used for neuroanatomical tract tracing studies because of its 
rapid transport down nerves [83]. In addition, studies in rodents showed that intranasal expo-
sure to cobalt-containing solutions results in the presence of cobalt ions in various brain loca-
tions, which indicates that cobalt is taken up from the olfactory mucosa and transported into 
the brain where it can continue to act as a calcium channel antagonist [84]. This is in agree-
ment with our data where we observed decreased neural activity in the Dp only at 18-hours 
post-treatment. Although we only examined cfos staining in the Dp and one other control 
region, extra-bulbar projections from the olfactory epithelium also project directly to regions 
of the brain implicated in social behaviors (such as the ventral nucleus of the ventral telenceph-
alon, Vv, and preoptic area) [73,85–87] suggesting that they could also be directly affected by 
CoCl2 treatment. If this is the case, cobalt chloride treatment could have even more widespread 
effects on neural circuits and social behaviors at multiple levels within the brain. 

Use of CoCl2 in behavior studies: social interactions and reproduction 

Complex behavioral displays performed during inter- and intra-sexual social interactions can 
include visual, auditory, olfactory, tactile, and hydrodynamic signals that convey information 
about the sender’s sex, motivation, reproductive state, and social status, and these behaviors 
are widely used across fish taxa. Studying the behavioral functions mediated solely by the lat-
eral line system is often problematic because of the difficulty in completely ablating the system, 
as well as the species-specificity [14,17,19–21,59,88] of many of the available pharmacological/ 
chemical approaches. Cobalt chloride has been commonly used to chemically ablate the 
mechanosensory lateral line system to examine how impaired reception of water movement 
signals influences fish behaviors, such as prey detection and social interactions [13,14,19]. 
However, there is only limited information on the effects of CoCl2 on other senses that may be 
important during multisensory behaviors. 

Since the first descriptions of the lateral line system, researchers have proposed that water 
movement cues could be used for communication during social interactions. Many fish species 
perform motions that generate water movements as part of their behavioral repertoire 
[3,60,89–96]. These behaviors produce visual cues in the form of fin and body movements, but 
also produce water movements that can be detected by the lateral line system of other near-by 
fish [97]. Recently, researchers have sought to empirically test the role of mechanoreception 
during social interactions [17,19,20]. A few of these studies used CoCl2 to chemically ablate the 
lateral line system to compare interactions between lateral line-intact and–ablated fish. This 
methodology, however, poses several potential problems. First, many studies failed to show 
treatment efficacy on the lateral line system, and instead have relied on previous literature and 
altered behavior as a verification. Neither of these are adequate to demonstrate reduced mecha-
noreceptive capabilities, as CoCl2 concentrations are species-dependent and also depend on 
the ionic composition of the solution [88]. CoCl2 can also cause toxicity effects leading to 
altered behavioral states [55], and as we demonstrate here, CoCl2 treatment can impair chemo-
sensory function that is likely involved in these social interactions. 

The deleterious effect of CoCl2 on chemosensory function has important implications for 
the interpretation of behavioral studies examining the role of mechanoreception, particularly 
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in terms of social interactions. The importance of chemosensory communication during fish 
social behaviors is well documented, especially in the goldfish C. auratus. Both male and female 
goldfish release pheromones that act to prime the opposite sex for reproduction and synchro-
nize spawning [98–101]. Pheromones are typically defined as substances (or mixtures of sub-
stances) that individuals release into the environment and when detected by conspecifics, 
induce adaptive behavioral and physiological responses [65,102]. Many fishes use pheromones 
as a key communication mode that can influence the behavior and physiology of near-by con-
specifics [103–107]. It is well demonstrated that many fish species use contextual urine release 
to convey information to conspecifics. For example, male tilapia Oreochromis mossambicus 
increase urine release in the presence of gravid, reproductively receptive females, but not when 
exposed to unreceptive females [103,104,108]. In addition, male swordtails (Xiphoporus spp.) 
increase urination frequency in the presence of conspecific females [107], and A. burtoni domi-
nant males use contextual urine release to signal to gravid females and other territorial males 
[94]. Similarly, O. mossambicus males use urinary communication to convey dominance status 
such that released urinary odorants may modulate aggression from conspecifics [108]. Mar-
uska and Fernald (2012), found that chemical communication varied under different sensory 
conditions (visual only vs full contact [94]), highlighting the importance of chemical commu-
nication during multimodal social interactions. These studies demonstrate the importance of 
chemosensory signaling during social interactions. Disrupting this key communication chan-
nel could have devastating effects on social interactions and even reproductive fitness. 

In our previous study, we examined the role of mechanosensory signals in mediating territo-
rial interactions in A. burtoni [17]. Using CoCl2 treatment to ablate the lateral line system, we 
showed that mechanosensory signals were used for opponent assessment, and that lack of 
mechanosensory input (decreased assessment abilities) resulted in reduced social interactions. 
Had this study not verified treatment efficacy and included toxicity controls, the decreased 
social interactions could have been explained by toxicity effects leading to decreased activity. In 
addition, comparisons to anosmic controls (ablation of the olfactory epithelium) in this study 
allowed us to be confident that the observed behavioral changes were due to decreased mecha-
noreceptive capabilities and not due to decreased chemosensory input. 

Of the handful of studies using CoCl2 treatment during behavioral studies, only one has 
controlled for potential unwanted impacts of CoCl2 on chemosensory systems [17]. Because of 
this, the use of CoCl2 treatment in studies examining the role of mechanoreception need to be 
re-evaluated with the understanding that CoCl2-treated fish likely have impaired mechanosen-
sory and chemosensory systems. An alternative approach used by Satou et al (1994) exposed 
fish to a vibrating sphere instead of a vibrating conspecific [20]. In these experiments, chemo-
sensory cues were not present, so the role of mechanosensory cues alone can be examined. 
However, in the context of multimodal social interactions, it is possible that mechanosensory 
information alone could act differently in a different sensory environment [94, 109]. For the 
continued use of CoCl2 in behavior research, however, all studies should examine for disruptive 
chemosensory effects and include appropriate controls. 

Use of CoCl2 in behavior studies: prey detection and feeding 

Outside of reproduction, feeding is one of the most important aspects of a fish’s life. The acqui-
sition of food involves searching for, detecting, capturing, and ingesting food. Depending on 
the species, prey detection is mediated strongly by visual cues, but other non-visual sensory 
modalities such as olfaction, gustation, and mechanoreception are likely also involved. Further, 
the relative importance of each sensory modality may depend on the sensory environment in 
which the fishes are foraging. Some fish species primarily forage at night, suggesting they rely 
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more on non-visual cues for prey detection. Several studies have investigated the role of the lat-
eral line system in mediating prey detection and capture [12–14]. In one study, researchers 
sought to understand the role of mechanoreception in night-time feeding strategies [14]. The 
authors compared the ability of the peacock cichlid, Aulonocara stuartgranti, to detect and cap-
ture live and dead prey during both light and dark trials. In addition, they used CoCl2 treat-
ment to ablate the lateral line system and found that the CoCl2-treated fish were unable to 
detect/capture prey in the dark. While the authors attribute this to the disabled lateral line sys-
tem, it is also possible that the CoCl2-treated fish had impaired chemoreception that decreased 
their ability to detect prey. The authors later confirmed that A. stuartgranti respond to artificial 
flows that mimic the natural hydrodynamic stimuli of prey [61]. After treatment with CoCl2, 
the fish failed to respond to the artificial stimulus, demonstrating that the hydrodynamic cues 
are used to detect water movements similar to those produced by prey. It is important to point 
out that fish were conditioned to respond to the stimulus using a food-reward. It is still possi-
ble, therefore, that after CoCl2 treatment fish had reduced motivation for the food reward or 
altered activation of neural circuits involved in prey capture. Interestingly, a similar study in Tra-
mitichromis sp., which have narrow lateral line canals, found that cobalt-treated and control fish 
had similar prey capture rates in the light, suggesting that hydrodynamic cues (and potentially 
chemosensory cues) are less important to this day-time feeder [110]. Acquisition of food in the 
dark likely involves input from all non-visual sensory systems and to fully understand the relative 
role of each system in prey detection, more controlled experiments are needed to verify that the 
CoCl2 treatments previously used had no impact on chemosensory systems. 

Recommendations for future use of CoCl2 in lateral line research 

Cobalt chloride treatment has been a common tool for chemical ablation of the lateral line sys-
tem for the past 30 years. However, due to behavioral and toxicity effects shown at high con-
centrations for prolonged periods in some species [55], and the now demonstrated comorbid 
impact on chemosensory systems, the continued use of CoCl2 in behavioral studies of the lat-
eral line system should be performed with caution. Moving forward, it would be advantageous 
to no longer use CoCl2 in any lateral line research and instead switch to other methods. Since 
our results show that CoCl2 treatment also impairs olfaction (and likely gustation, although 
not studied here), we recommend that CoCl2 (and other heavy metals) be used for chemical 
ablation of the lateral line system only as a last resort. Aminoglycoside antibiotics offer a nice 
alternative to CoCl2 and have been successfully used in many recent lateral line studies. One 
limitation of aminoglycosides is the high variability of effectiveness across different species 
[88], and that aminoglycoside efficacy is dependent on the ionic composition of the solution. 
Like cobalt, antibiotics and calcium appear to have antagonizing effects on each other [111–113]. 
Gentamicin and streptomycin used in high conductivity water are less effective than when used 
in RO water [17,88], which precludes their use for many marine fishes. Further, one study noted 
a high mortality rate associated with antibiotic treatment [114], leading some to question their 
results. An alternative to chemical and pharmacological ablation is the use of physical ablation 
techniques, such as transections of the lateral line nerves to remove input to central lateral line 
processing regions [18,59]. While exposure and transection of the posterior lateral line nerves is 
quick and easy, the anterior lateral line nerves (ALLn) often travel in close proximity to other cra-
nial nerves and the brain, making transection of all ALLn branches more difficult. Scrapping, 
plucking, ‘peeling off’ superficial neuromasts after glue application, and burning off neuromasts 
with liquid nitrogen are other physical ablation methods that have been previously used 
[88,115,116]. As with chemical ablation techniques, however, appropriate controls are still 
needed to ensure treatment efficacy and control for handling and treatment stress. 
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When the use of CoCl2 is unavoidable, researchers should minimally verify treatment effi-
cacy using a vital dye, such as DASPEI or FM1-43. In addition to revealing treatment effective-
ness on lateral line neuromasts, vital dye staining will reveal potential impacts on the olfactory 
epithelium, making it relatively easy for researchers to verify effects on lateral line and olfaction 
in the same animals. Finally, researchers using CoCl2 should include appropriate controls to 
demonstrate that any behavioral measures quantified are not due to toxicity or impacts on 
other sensory systems. For example, our previous work in A. burtoni included anosmic (olfac-
tory epithelium ablated) controls and allowed us to be confident that behavioral changes were 
not due to lack of chemoreception [17]. Our results shown here now suggest that any study 
using CoCl2 treatment must control for CoCl2 effects on chemosensory systems. Understand-
ing the role of mechanosensory signals during social interactions can provide important and 
relevant information on the relative importance of individual sensory channels during multi-
modal behaviors. With more than 30,000 species of fishes, and most species possessing both 
lateral line and chemosensory systems, it is important to distinguish between these two sensory 
systems in future research if we hope to fully understand the role of the mechanosensory lateral 
line in mediating behaviors. 

Conclusion 

Results of this study demonstrate that a common treatment used to ablate the mechanosensory 
lateral line system, CoCl2, also impairs the olfactory sense in three different species of freshwa-
ter fishes. Many fishes use chemosensory signaling during social interactions, and detection of 
chemical compounds is essential for predator avoidance and prey detection. The lateral line 
system is also implicated in these behaviors, however, most previous studies failed to examine 
potential effects of cobalt chloride on chemosensory systems. Fishes use multisensory signaling 
during social interactions and this information is integrated in the brain to produce context-
appropriate behaviors. The role of each sensory channel in providing unique or redundant 
information to the receiver is currently the interest of many research programs. It is important, 
therefore, to verify that any treatment intended to remove one sensory channel does not dis-
rupt use of other sensory modalities. 

Supporting Information 

S1 Dataset. Excel file containing data used for analysis. Dataset includes all fish data, DAS-
PEI-fluorescence data, and cfos quantification data for each species. Data from A. burtoni, gold-
fish, and cavefish are on individual sheets, and all abbreviations are defined within each sheet. 
(XLSX) 
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