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Synopsis In species that form dominance hierarchies, there are often opportunities for low-ranking individuals to 
challenge high-ranking ones, resulting in a rise or fall in social rank. How does an animal rapidly detect, process, and 
then respond to these social transitions? This article explores and summarizes how these social transitions can rapidly 
(within 24 h) impact an individual’s behavior, physiology, and brain, using the African cichlid fish, Astatotilapia burtoni, 
as a model. Male A. burtoni form hierarchies in which a few brightly-colored dominant males defend territories and 
spawn with females, while the remaining males are subordinate, more drab-colored, do not hold a territory, and have 
minimal opportunities for reproduction. These social phenotypes are plastic and reversible, meaning that individual males 
may switch between dominant and subordinate status multiple times within a lifetime. When the social environment is 
manipulated to create males that either ascend (subordinate to dominant) or descend (dominant to subordinate) in rank, 
there are rapid changes in behavior, circulating hormones, and levels of gene expression in the brain that reflect the 
direction of transition. For example, within minutes, males ascending in status show bright coloration, a distinct eye-bar, 
increased dominance behaviors, activation of brain nuclei in the social behavior network, and higher levels of sex steroids 
in the plasma. Ascending males also show rapid changes in levels of neuropeptide and steroid receptors in the brain, as 
well as in the pituitary and testes. To further examine hormone–behavior relationships in this species during rapid social 
ascent, the present study also measured levels of testosterone, 11-ketotestosterone, estradiol, progestins, and cortisol in the 
plasma during the first week of social ascent and tested for correlations with behavior. Plasma levels of all steroids were 
rapidly increased at 30 min after social ascent, but were not correlated with behavior during the initial rise in rank, 
suggesting that behavior is dissociated from endocrine status. These changes during social ascent are then compared with 
our current knowledge about males descending in rank, who rapidly show faded coloration, decreased dominance 
behaviors, increased subordinate behaviors, and higher circulating levels of cortisol. Collectively, this work highlights 
how the perception of similar social cues that are opposite in value are rapidly translated into adaptive behavioral and 
neuroendocrine changes that promote survival and reproductive fitness. Finally, future directions are proposed to better 
understand the mechanisms that govern these rapid changes in social position. 

Introduction resources can lead to changes in relative social rank 
To promote survival and reproductive fitness, indi- among individuals in the population, with some rising 
viduals living in dominance hierarchies must have to higher status and some falling to lower status. Since 
mechanisms that rapidly adapt their behavior and reproductive opportunity and fitness is often greater 
physiology to changes in social position. This ability for individuals of high social position, these transi-
is even more crucial in species living in dynamic tions in rank have important consequences for 
habitats in which environmental fluctuations and growth, survival, and reproduction (Altmann et al. 
social interactions may trigger alterations in avail- 1995; Sapolsky 2005; Young 2009). How do animals 
ability of resources or territories. This shuffling of make these quick decisions on whether or not to 
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change social status, and how quickly do behavior and 
physiology adapt? While there are many animals, in-

cluding humans, in which adaptive changes occur 
quickly in response to social or environmental cues 
(Sapolsky 2005; Summers et al. 2005; Chiao et al. 
2009; Maruska 2014), less is understood about the 
cellular and molecular mechanisms that govern these 
crucial transitions. 

Rapid transitions in social status are possible be-

cause animals constantly assess their surroundings via 
multiple sensory systems, and integrate this informa-

tion with appropriate neural circuits that modulate 
behavioral outputs and physiology. This ability to 
quickly match their behavior and physiology to the 
current environmental and social conditions is crucial 
for an individual’s fitness. The relationship between 
behavior, the brain, and levels of circulating hormones 
is dynamic in most vertebrates, but serves as an inte-

grative neuroendocrine substrate for mediating 
changes in social status, particularly those tightly 
linked to reproductive function. Across vertebrates, 
for example, steroid hormones can modulate neural 
circuits that influence behaviors and fertility (Remage-

Healey and Bass 2006; Campbell and Herbison 2014), 
but social and environmental signals can also induce 
rapid changes in levels of steroids in the plasma and 
in the functioning of the brain (Wingfield et al. 1990; 
Pradhan et al. 2010). In many cases, these changes in 
hormones, behavior, and neural-circuit function can 
occur on very short (seconds to hours) timescales. 
Importantly, rapid changes can also occur on different 
organizational levels, ranging from whole-animal be-

havior to hormone levels to cellular physiology to 
molecular-level changes in gene expression. To study 
the mechanisms involved in transitions in status on all 
of these biological levels requires a model system in 
which changes in social status can be reliably induced, 
with tractable phenotypes, and genomic resources 
(Renn et al. 2008; Robinson et al. 2008; Harris and 
Hofmann 2014; Maruska and Fernald 2014). One 
such system is the African cichlid fish Astatotilapia 
burtoni, which will be used here as a framework for 
discussing the rapid behavioral, hormonal, and mo-

lecular changes associated with transitions in social 
status. While ‘‘rapid’’ is a relative term with varying 
contextual meanings across fields, the focus here will 
be on changes that occur on the timescale of minutes 
to hours (e.g., within the first 24 h) following a switch 
in social status between subordinate and dominant 
phenotypes. 

The African cichlid fish A. burtoni is an ideal model 
for examining the mechanisms involved in rapid and 
adaptive changes in social position (see Hofmann and 
Fernald (2001); Fernald and Maruska (2012); Maruska 

and Fernald (2013); Maruska (2014); Maruska and 
Fernald (2014) for reviews). Males of this species 
form dominance hierarchies in which a small percent-

age ( 10–30%) of individuals are dominant, are 
brightly-colored, aggressively defend a territory used 
for feeding and spawning, and are reproductively 
active. On the other hand, the majority of males in 
the population are subordinate and have a suppressed 
reproductive system, dull coloration, and typically shoal 
with females rather than maintain a territory. When a 
territory does become available, however, subordinate 
males can rapidly change their coloration, behavior, 
and physiology to that of the dominant male’s pheno-

type. Similarly, resident dominant males can be chal-

lenged for their territory through agonistic interactions 
with rival males and may lose their resources and po-

sition in the dominance hierarchy and fall in rank. 
Thus, the dynamic physical and social living conditions 
of A. burtoni facilitate frequent changes in relative rank 
within the population, which has important conse-

quences for survival and reproductive fitness. 
Capitalizing on the ideally-suited A. burtoni model 

for studying transitions in social status, the goals of 
this article are several-fold. First, to better under-

stand the relationship between circulating steroids 
and behavior during changes in status, the present 
study reports new data on changes in levels of ste-

roids (androgens, estradiol, progestins, cortisol) in 
the plasma and behaviors during social ascent at 
the same times used in previous studies on A. bur-

toni (Maruska and Fernald 2010a, 2011a; Maruska 
et al. 2011). These data contribute important new 
information on the relationships between behavior 
and levels of circulating steroids that are induced 
by a rise in social position, thereby increasing the 
utility of this emerging model system for compara-

tive studies. Second, this article reviews and summa-

rizes our current knowledge on how behavior and 
physiology in male A. burtoni changes following a 
rise or fall in social rank, with a specific focus on 
those changes occurring on a short timescale (within 
24 h of transition in status). Finally, directions for 
future work are proposed based on insights from 
the rapid social and reproductive plasticity exempli-

fied by the A. burtoni model system. 

Methods 

Animals, experimental paradigm, 
sampling, and behavioral analyses 
Adult male A. burtoni (SL ¼ 68.5 7.8 mm; 
BM ¼ 9.1 2.8 g) used for these experiments were 
from a laboratory-bred population that was derived 
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from wild-caught stock from Lake Tanganyika, 
Africa. Fish were maintained in aquaria under envi-

ronmental conditions similar to their native equato-

rial habitat (28–298C, pH 8.0, 12 h light: 12 h dark, 
constant aeration), and fed cichlid flakes daily. 
Aquaria contained gravel-covered bottoms and 
halved terra cotta pots to serve as territory shelters. 
Experimental procedures were approved by the 
Stanford Administrative Panel for Laboratory 
Animal Care. 

The experimental paradigm and quantification of 
fish behaviors used here was identical to those de-

scribed by Maruska and Fernald (2010a) and used in 
other studies (Maruska and Fernald 2011a, Maruska 
et al. 2011, 2013b, Carpenter et al. 2014), so will only 
be briefly described here. For these experiments, the 
following groups of males were generated: stable sub-

ordinate, stable dominant, and males ascending in 
rank that were sampled at 0.5, 6, 24, 72, and 120 h 
after social opportunity. To create ascending males, 
subject males were initially suppressed by large dom-

inant males in a community tank for 4–5 weeks to 
create subordinate individuals that would be 
given an opportunity to rise in rank. Following the 
period of suppression, subject subordinate males 
were moved to the center compartment of an exper-

imental tank that contained one larger resident dom-

inant male and three to four females. Subject males 
remained in the center compartment for 2 days 
during which their subordinate status was confirmed 
by behavioral observations. The center compartment 
was bordered on either side by mixed-sex communi-

ties behind clear acrylic barriers so that experimental 
fish could see but not physically interact with these 
neighbors. On the day of ascent, the large resident 
male was removed in the dark with a net by a re-

searcher wearing night-vision goggles. The resident 
was removed 1 h prior to the onset of light, thus 
ensuring that visual absence of the resident occurred 
consistently at light-onset for all subject males. Stable 
subordinate and dominant males were also used as 
comparisons to the males rising in social rank. Stable 
subordinate males were suppressed in community 
tanks for 4–5 weeks as described above, and on the 
day of ascent, a net was dipped into the tank prior to 
the onset of light, but the resident dominant male 
was not removed. Stable dominants were dominant 
males that maintained their high status in commu-

nity tanks for a 4–5 week period and were then 
moved to the experimental tank with the 3–4 females 
but no large resident dominant male. On the sam-

pling collection day, a net was dipped into the tank 
prior to light-onset to simulate a fish’s removal. 
Stable dominant males were collected at 30 min 

after displaying dominance behaviors at a rate of 
three behaviors per minute, similar to that of ascend-

ing males. Stable subordinate males were collected at 
40–45 min after the onset of light, which matches the 
average collection time of both stable dominant 
males and those males that were given a social op-

portunity and ascended in rank. 
Fish were videotaped in the experimental com-

partment for 45 min at the start of light-onset in 
the morning on the day before, day of, and for 
each of 5 days after social ascent. Videos were quan-

tified by observers blind to the experimental condi-

tion. The following stereotypical behaviors were 
quantified as described in previous studies: fleeing 
(submissive behavior); frontal displays, lateral dis-

plays, border fights (territorial/agonistic behaviors); 
chasing, courtship quiver displays, leads, pot shelter 
entries, and digging (reproductive behaviors) 
(Fernald 1977; Fernald and Hirata 1977; Maruska 
and Fernald 2010a). Behavioral data on the day the 
fish were collected were used to test for correlations 
with levels of circulating steroids measured at the 
same timepoint (Pearson product moment test). 

Sampling of blood and assays of steroid 
hormones 
To measure circulating steroid hormones in subor-

dinate, dominant, and ascending male fish at differ-

ent times after social ascent (0.5, 6, 24, 72, and 
120 h), fish were first anesthetized in ice-cold tank 
water, and measured for standard length (SL) and 
body mass (BM). Within 2 min of capturing a fish, 
heparinized 100-ml capillary tubes were used to col-

lect blood samples from the caudal vein. Blood was 
centrifuged at 8000 rpm for 10 min, and then plasma 
was removed and stored at 808C. Testes were also 
removed and weighed to calculate gonadosomatic 
index (GSI ¼ [gonad mass/BM] * 100) as a measure 
of reproductive investment. 

Enzyme ImmunoAssay (EIA) kits (Cayman 
Chemical, Inc.) were used to measure concentrations 
of testosterone (T; No. 582701), 11-ketotestosterone 
(11-KT; No. 582751), estradiol (E2; No. 582251), pro-

gestins (P; No. 582601), and cortisol (No. 500360) in 
the plasma at different times after social ascent. While 
a previous study measured levels of 11-KT in the 
plasma at these same times (Maruska and Fernald 
2010a), circulating concentrations of T, E2, P,  and  
cortisol were unknown. Plasma samples (10 ml) from 
each individual were extracted three times with 200 ml 
of diethyl ether, evaporated under a fume hood, and 
then reconstituted in assay buffer prior to analysis 
(1:40–1:55 dilutions). For cortisol assays, samples 
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were directly diluted 1:50 in assay buffer without 
extraction. Instructions provided by the manufacturer 
were then strictly followed. All samples were assayed 
in duplicate, plates were read at 405 nm using a 
microplate reader (UVmax Microplate reader, 
Molecular Devices), and hormone levels determined 
based on a standard curve run for each steroid and 
plate. Mean intra-assay coefficients of variation (CV) 
were: P (5.8%), T (9.5%), 11-KT (5.2%), E2 (8.1%), 
cortisol (7.3%). Inter-assay CVs were: P (13.6%), T 
(4.3%), 11-KT (5.9%), E2 (6.7%), cortisol (10.1%). 
The EIAs for  cortisol, T, 11-KT, E2, and  P were pre-

viously validated and used to measure levels of circu-

lating steroids in this species in other studies 
(Maruska and Fernald 2010b; O’Connell and 
Hofmann 2012; Kidd et al. 2013; Maruska et al. 
2013 b). In some cases, steroid concentrations were 
log-transformed prior to statistical analyses 
(ANOVA, SigmaPlot 12, Systat software). 

Results 
Subject subordinate males rapidly displayed both ter-

ritorial and reproductive behaviors within the first 
30 min of social ascent (Fig. 1). While the number 
of territorial behaviors per minute was higher than 
the number of reproductive behaviors at the 30 min 
time point, by 6 h after ascent, these behavioral pri-

orities switched to more reproductive behaviors, 
which were then sustained at similar levels over sub-

sequent days (Fig. 1). The mean time to ascend (e.g., 
reach a rate of three behaviors per min) was 
11.9 1.4 min after the onset of light, which did 
not differ from that measured in our previous 
study (12.7 1.2 min) (Student’s t-test; t ¼ 0.872; 
P ¼ 0.447) (Maruska and Fernald 2010a). Behaviors 
(type and timing) of subordinate, ascending, and 
dominant males quantified here were nearly identical 
to those described in detail previously, using the 
same experimental paradigm and sampling regime 
(Maruska and Fernald 2010a), and will not be dis-

cussed here. The focus of this study, rather, was to 
test for correlations between these behaviors and 
levels of circulating steroids, which is reported below. 

Gonadosomatic index, an indicator of reproduc-

tive investment, and plasma levels of circulating ste-

roid hormones across the different times are plotted 
in Fig. 2. As in previous studies, subordinate males 
had similar GSI values to males rising in rank (all 
timepoints sampled), and subordinate and ascending 
males had lower GSI values than did dominant males 
(ANOVA, F(6,63) ¼ 10.47, P50.001; SNK, P50.05). 
For all circulating steroid levels measured, dominant 
males had higher levels than did subordinate males. 

Fig. 1 Male Astatotilapia burtoni rising in social rank rapidly pro-

duce both aggressive and reproductive behaviors within the first 
30 min of social ascent. Within a few hours (6 h timepoint), ag-

gressive behaviors decrease and reproductive behaviors increase. 
Sample sizes are N ¼ 8–12 per timepoint. 

Further, there were rapid increases in circulating levels 
of cortisol (ANOVA, F(6,63) ¼ 3.16, P ¼ 0.010; SNK, 
P50.05), E2 (ANOVA, F(6,63) ¼ 11.96, P50.001; 
SNK, P50.05), T (ANOVA, F(6,63) ¼ 4.19, P ¼ 0.001; 
SNK, P50.05), 11-KT (ANOVA, F(6,63) ¼ 5.72, 
P50.001; SNK, P50.05), and P (ANOVA, 
F(6,63) ¼ 9.63, P50.001; SNK, P50.05) at 30 min 
after social ascent compared with levels measured in 
stable subordinate males (Fig. 2). 

Correlation analyses performed on all males used 
in this study (N ¼ 70) between behaviors, levels 
of plasma steroids, and GSI, are summarized in 
Table 1. As expected, plasma levels of T, 11-KT, E2, 

and P were all positively correlated with each other. 
In contrast, circulating levels of cortisol were not 
correlated with any other steroid levels, or GSI, or 
any of the quantified behaviors. Fleeing behavior was 
negatively correlated with circulating levels of T, 11-

KT, E2, and P. Furthermore, territorial behaviors 
were not well correlated with the levels of any circu-

lating steroids. For example, only frontal displays 
showed positive correlations with levels of 11-KT 
and E2. In contrast, all reproductive behaviors were 
positively correlated with T, 11-KT, E2, and P, but 
not with cortisol. The only exception was the absence 
of a correlation between digging behavior and levels 
of 11-KT (Table 1). 

Since one of the goals of this study was to focus 
on rapid changes associated with social transitions, 
correlation analyses were also run between behaviors 
and levels of circulating steroids within those indi-

viduals collected at the 30-min, 6-h, and 24-h time-

points. Within each of these rapid timepoints, there 
were no significant correlations between any of the 
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Fig. 2 Circulating levels of steroid hormones are rapidly ele-

vated at 30 min after subordinate male Astatotilapia burtoni are 
provided with an opportunity to rise in social rank. Despite 
their small testes and low gonadosomatic index (GSI), as-

cending males show higher levels of cortisol, estradiol, tes-

tosterone, 11-ketotestosterone (a fish-specific androgen), and 

individual behaviors and any of the levels of steroids 
in the plasma (Pearson correlation, all P40.05). 

Discussion 
Subordinate male A. burtoni showed increases in 
dominance behavior and circulating levels of the ste-

roid hormones cortisol, T, 11-KT, E2, and P within 
the first 30 min of rising in social rank. This rapid 
hormonal response is likely triggered by the social 
interactions, which are primarily agonistic in nature 
during the first 30 min, before switching to more 
reproductive behaviors several hours later. These 
new data show that the social opportunity is associ-

ated with quick increases in several steroid hor-

mones, which then fluctuate differently over the 
next several days depending on the steroid. The ab-

sence of correlations between steroid concentrations 
in the plasma and behaviors, however, suggests a 
decoupling between endocrine state and behavior 
during the initial transition to a higher ranking 
status. It is important to keep in mind, however, 
that correlations do not imply causation, and there 
are likely other variables important for interpreting 
the relationship between behaviors and levels of ste-

roid hormones that require further investigation. 
Nevertheless, a mismatch between outward and 
inward phenotypes may have evolved because it 
had a fitness benefit under the conditions of the 
dynamic environmental and social habitat, in which 
opportunities for social ascent are frequent. 

Rapid changes in steroid hormones often are not 
well correlated with expression of behaviors in the 
short-term (Adkins-Regan 2005). Since behavior ul-

timately is controlled by the brain, the expression of 
different behaviors can change without the canonical 
steroid-producing tissues like the gonads. For exam-

ple, removal of the gonads does not affect rapid dis-

plays of territorial and reproductive behaviors in a 
sex-changing fish (Godwin et al. 1996), and castra-

tion does not influence aggressive or sexual behaviors 
in some mammals (Demas et al. 1999; Scotti et al. 
2008; Carter et al. 2014). In male A. burtoni, circu-

lating sex steroids were not correlated with aggressive 
or territorial behaviors, but were positively correlated 

Fig. 2 Continued 
progestins at 30 min after given a social opportunity compared 
with subordinate males. Dominant males also typically show 
higher levels in the plasma compared with subordinate males for 
all steroids measured. Data are plotted as mean SE for sub-

ordinate, 0.5, 6, 24, 72, and 120 h after social ascent, and dom-

inant males. Sample sizes shown in parentheses indicate the 
number of individuals measured per timepoint. Different letters 
indicate statistical differences among groups at P 0.05. 
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Table 1 Matrix of correlations between social behaviors, gonadosomatic index (GSI), and levels of plasma steroids in male Astatotilapia 
burtoni 

Notes: Levels of steroids are negatively correlated with submissive behaviors (flee), positively correlated with many reproductive behaviors 
(chase, court quiver, lead, dig, shelter entry), and show minimal correlations with territorial aggressive behaviors (frontal display, lateral display, 
border fight). Dark gray (red online), negative correlation; medium gray (green online), positive correlation; light gray, no correlation. Significance 
at P � 0.05 is also indicated in bold. Males from all seven groups were included in the analysis (N ¼ 70). Correlation coefficients (top values) and 
P-values (bottom values) from Pearson product moment correlation tests are shown. T, testosterone; 11KT, 11-ketotestosterone; E2, estradiol; 
P, progestins. 

with reproductive behaviors when all males were ex-

amined together. This suggests that sex steroids may 
play a role in the expression or modulation of re-

productive behaviors during the social transition, but 
that aggressive behaviors may be regulated by inde-

pendent mechanisms. In another study of A. burtoni, 
however, T and E2 levels in the plasma were posi-

tively correlated with aggressive index (Huffman 
et al. 2012), but this difference may be due to the 
longer timeframe (2 weeks) of social ascent used in 
the Huffman et al. experiments compared with the 5 
days used in the present study. In the related tilapia 
Oreochromis mossambicus, castration decreases repro-

ductive behaviors, but has no effect on aggressive 
behaviors (Almeida et al. 2014), demonstrating a 
similar reliance of gonadal steroids on reproductive 
behavior but not on aggression. Thus, there is in-

creasing support for decoupling of aggressive behav-

iors from gonadal steroids, suggesting independent 
central mechanisms for reproduction and aggression. 
In the mammalian hypothalamus, for example, there 
is evidence for overlapping, but distinct, neural pop-

ulations involved in fighting versus mating, suggest-

ing that there are separate reproductive and 

aggressive circuits in some regions of the brain 
(Lin et al. 2011). The rapid expression of aggressive 
and reproductive behaviors in A. burtoni may be con-

trolled by independent neural circuits, in which differ-

ential expression of steroid receptors in different 
regions of the brain may moderate/modulate context-

dependent behaviors. It is possible, therefore, that 
rapid changes in sex steroids during social transitions 
serve to quickly modulate appropriate behavioral ex-

pression rather than being required to initiate it. The 
rapid timecourse of this behavioral plasticity suggests 
mechanisms related to modulation of existing neural 
circuits. In fact, male A. burtoni rising in rank show 
activation of, and increases in, the expression of differ-

ent subtypes of androgen and estrogen receptors in 
several regions of the social behavior network (SBN) 
(Fig. 3), a collection of interconnected brain nuclei hy-

pothesized to mediate social decisions (Newman 1999; 
Goodson 2005). These rapid changes in neural circuits 
can then be followed by genomic-level changes if the 
social and environmental conditions dictate more 
long-term phenotypic changes. 

Since levels of circulating steroids may not always 
be good predictors of behavior, particularly during 
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Fig. 3 Rapid changes in mRNA levels of IEGs (egr-1/cfos) and sex steroid receptors in social-processing regions of the brain associated 
with Astatotilapia burtoni males rising in social rank. Relative size of the symbols in each schematic sagittal section of the brain indicates 
the relative mRNA levels of each gene between subordinate males (left) and males ascending in social rank at 30 min after ascent 
(right). Within each identified nucleus of the brain (gray ovals), only those genes that showed differences between subordinate and 
ascending males are shown. Note that the ascending phenotype has higher mRNA levels (i.e., more large symbols) of several types of 
steroid receptors within many regions of the brain compared with the subordinate phenotype. Locations of each nucleus within the fish 
brain are depicted to minimize overlap and are therefore only approximate. Rostral is to the left. ARa, ARb, androgen receptor 
subtypes a and b; ATn, anterior tuberal nucleus; Dm, medial zone of the dorsal telencephalon; Dl, lateral zone of the dorsal telen-

cephalon; ERa, ERba, ERbb, estrogen receptor subtypes a, ba, and bb; Pit, pituitary; POA, preoptic area; Vs, supracommissural nucleus 
of the ventral telencephalon; VTn, ventral tuberal nucleus; Vv, ventral nucleus of the ventral telencephalon. Modified from Maruska 
et al. (2013b). (This figure is available in black and white in print and in color at Integrative and Comparative Biology online.) 

periods when there is decoupling of physiological 
traits from phenotypic traits of color and behavior, 
then what is the purpose of rapidly increased 
plasma steroids during a change in social status? 
One possibility is that socially-induced changes in 
levels of circulating steroids are not related to the 
immediate context, but may modulate behavioral ex-

pression in future social interactions (Oliveira and 
Oliveira 2014). This ‘‘winning hypothesis’’ postulates 
that the probability of winning future interactions is 
governed by the success in previous ones, possibly 
mediated by transient changes in androgens 
(Oyegbile and Marler 2005; Hsu et al. 2006; Oliveira 
et al. 2009). Thus, it is likely that rapid increases in 
sex-related and stress-related steroids at social ascent 
in A. burtoni function to modulate expression of var-

iables required for success in subsequent social 
interactions, as well as to initiate expression of phys-

iological traits needed for dominance status and re-

productive competence. While most previous research 
on this topic has focused on androgens (Oyegbile and 
Marler 2005; Oliveira et al. 2009; Fuxjager et al. 2010; 
Tibbetts and Crocker 2014), similar effects by other 
steroids (e.g., estrogens, progestins, cortisol) on cog-

nitive processing also likely exist. 

Summary of rapid changes along the 
brain–pituitary–testis axis during social 
ascent 
In addition to the quick switch in behavioral reper-

toire and increases in levels of circulating steroids, 
the social transition from subordinate to dominant 
in male A. burtoni is associated with rapid 

physiological changes in the brain, pituitary, and 
testes (Fig. 4) (reviewed by Maruska and Fernald 
(2011b, 2013, 2014), Fernald and Maruska (2012), 
Maruska (2014)). These types of physiological 
changes along the reproductive axis also occur in 
other taxa in response to social transitions 
(Sapolsky 2005; Young 2009; Alonso et al. 2012; 
Fernald and Maruska 2012; Stevenson et al. 2012), 
and are important for allowing animals to properly 
allocate energy between growth and reproduction, 
thereby promoting survival and fitness. Within the 
first 24 h of social ascent in A. burtoni, many adap-

tive changes are initiated as the male transitions to a 
higher status. In the brain, for example, there are 
increases in cell proliferation in many regions 
(Maruska et al. 2012), activation of SBN nuclei mea-

sured by immediate early genes (IEGs) (Maruska 
et al. 2013b), increases in mRNA levels of sex steroid 
receptors in several SBN regions (Maruska et al. 
2013b), and up-regulation of the gonadotropin-re-

leasing hormone (GnRH1) neurons in the preoptic 
area as demonstrated by increases in GnRH1 somata 
size and mRNA expression (Davis and Fernald 1990; 
Maruska and Fernald 2013). Within 15 min of social 
ascent, there are also changes in mRNA expression of 
corticotropin-releasing factor (CRF) and its receptors 
in the brain, suggesting that the CRF system is in-

volved in rapid shifts in social status (Carpenter et al. 
2014). 

In the pituitary gland, there are rapid increases in 
mRNA levels of the b-subunits of the two gonado-

tropin hormones, luteinizing hormone (LH), and 
follicle stimulating hormone (FSH) (Maruska et al. 
2011). The levels of circulating LH and FSH are also 
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Fig. 4 Summary of rapid phenotypic changes in Astatotilapia burtoni males that are ascending (A) or descending (B) in social rank. 
Changes that occur within the first 24 h of males rising or falling in rank are shown. These adaptive phenotypic changes occur on similar 
timescales, but are often opposite in valence. Compared with social ascent, less is known about rapid physiological and molecular 
changes during social descent, but some cellular changes and changes in level of gene expression along the brain–pituitary–testes axis 
occur more slowly (days to weeks) (White et al. 2002). Data are compiled from Parikh et al. (2006), Maruska and Fernald (2011a), 
Maruska et al. (2011), Kustan et al. (2012), Maruska et al. (2012, 2013a, 2013b), and Carpenter et al. (2014). 
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rapidly elevated within 30 min of social ascent 
(Maruska et al. 2011), suggesting quick activation 
of the testes that promotes both spermatogenesis 
and steroid production. This coincident increase in 
pituitary mRNA levels and circulating mature hor-

mones suggests that GnRH1 release to the pituitary 
rapidly up-regulates transcription (or liberates 
mRNA via other mechanisms) and causes release of 
already synthesized LH and FSH to the bloodstream. 
During the first 30 min of ascent, there are also in-

creases in levels of circulating steroid hormones (T, 
11-KT, E2, P), suggesting that the suppressed testes 

have enough steroidogenic potential to initiate this 
increase, or possibly that other steroid-producing tis-

sues are involved. Importantly, although unknown in 
A. burtoni, in several other species of fish there is 
evidence that both LH and FSH can simultaneously 
stimulate steroid production and spermatogenesis 
(Garcia-Lopez et al. 2010; Levavi-Sivan et al. 2010), 
thereby providing the potential for rapid steroid re-

lease and sperm production from the suppressed 
testes within minutes of the ascent. 

In the testes, there are increases in mRNA levels of 
FSH receptor, several sex steroid receptors (ARa, 
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ARb, ERa, ERba), and corticosteroid receptors 
(GR1a, GR1b, GR2, MR) within the first 24 h of 
social ascent (Maruska and Fernald 2011a). Further, 
within this same short timeframe, the quality of 
sperm also increases and these rising males can suc-

cessfully court and spawn with females to sire viable 
offspring (Kustan et al. 2012). Male A. burtoni rising 
in social rank, therefore, show rapid and adaptive 
physiological changes along the brain–pituitary– 
testes axis that facilitate their transition to a domi-

nant reproductive member of the population. In fact, 
the plasticity seen during the social ascent of A. bur-

toni represents one of the most rapid and extensive 
socially-induced transformations of the entire repro-

ductive axis thus far described for any vertebrate. 
Because A. burtoni shows these rapid socially-

induced changes, it will serve as an ideal model 
system for uncovering the neural and physiological 
mechanisms that govern cellular and molecular plas-

ticity along the reproductive axis during changes in 
relative social position. The recent genome sequenc-

ing of A. burtoni and other African cichlids (Brawand 
et al. 2014) will also facilitate comparative and ge-

netic manipulative studies to better understand the 
mechanisms controlling status and reproductive plas-

ticity, as well as the selective pressures driving their 
evolution. 

Social ascent versus social descent 
Rising and falling in relative social rank can occur 
frequently in species that maintain dominance hier-

archies, but how do social ascent and social descent 
differ? In A. burtoni, as in many animals, the transi-

tions in status often require rapid behavioral and 
physiological changes that are similar, but opposite 
in direction (Fig. 4). For example, ascending males 
quickly turn on their aggressive eye-bar, intensify the 
coloration of their body, and begin performing dom-

inance behaviors, while descending males turn off 
their eye-bar, fade their coloration, and adopt sub-

missive behaviors within the same period of time 
(White et al. 2002; Burmeister et al. 2005; Maruska 
and Fernald 2010a; Maruska et al. 2013a). These out-

ward changes in appearance and behavior that occur 
within minutes are likely an adaptation to quickly 
signal their new status to conspecifics, thereby reduc-

ing potential costly social interactions, and represent 
a period when the animal’s outward and inward phe-

notypes do not necessarily match. This temporary 
dissociation of behavior and physiology in the 
short-term is likely a consequence of the additional 
time required to generate cellular and physiological 
changes (e.g., protein expression), and the need for 

rapid mechanisms was likely selected over evolution-

ary time because it offered an advantage during these 
types of social transitions. 

Behavioral plasticity relies on a nervous system 
that can perform rapid integrative and adaptive re-

sponses to changing conditions. This ensures that 
individuals with better or faster mechanisms of as-

sessing, recognizing, and changing social status will 
have higher fitness, and will be more likely to pass 
their genes on to the next generation. The rapid be-

havioral changes in male A. burtoni observed during 
both social ascent and social descent conform to this 
premise, and therefore, make evolutionary sense. It is 
possible, however, that different neural mechanisms 
exist for rising versus falling in rank. For example, 
the degree of reversibility may be greater in one di-

rection compared with the other, which necessitates 
involvement of different neurons, circuits, or cellular 
and molecular processes. In fact, the pattern of acti-

vation within SBN nuclei measured by IEGs (cfos, 
egr-1) differs between social ascent and social descent 
in A. burtoni (Maruska et al. 2013a). Thus, while the 
perception of a needed change in relative social po-

sition is rapidly registered by the brain for transitions 
in both directions, the conversion into transcrip-

tional control of late-response genes that are neces-

sary for phenotypic change likely differs and may 
also occur on different temporal scales. 

Aside from the rapid fading of coloration, turning 
off of the eye-bar, increased submissive behaviors, and 
activation of the brain, little is known about how 
quickly physiological changes occur as males fall in 
social rank (Fig. 4) (White et al. 2002; Parikh et al. 
2006; Maruska et al. 2013a). Within 30 min of social 
descent, however, there are increases in circulating 
levels of cortisol and decreases in levels of androgens 
(Maruska et al. 2013a). Males showing the greatest 
change toward more submissive behaviors also had 
the highest levels of cortisol, suggesting that this 
stress hormone may facilitate the behavioral switch 
from dominant to submissive behaviors as part of 
an adaptive strategy for coping with new conditions. 
Physiological changes along the reproductive axis such 
as shrinking of GnRH1 neuron size and testes size 
appear to occur more slowly over days to weeks 
(White et al. 2002). This protracted timescale may 
be an adaptation that retains reproductive potential 
and opportunities as long as possible in anticipation 
of acquiring a territory, thereby making a reversal in 
phenotype to the status of dominance faster. Future 
studies are needed, however, to determine whether 
there are other cellular or molecular changes along 
the brain–pituitary–gonad axis, or elsewhere, that 
occur rapidly during social descent. 
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Fig. 5 Conceptual framework for transitions in social status. An individual’s phenotype is shaped by many inputs including genotype, 
body condition, reproductive state, and prior social experience. Animals living in social societies constantly evaluate the social 
environment by interacting with and watching other individuals in the population. Individuals of one phenotype (phenotype A) then 
integrate all of these inputs and make adaptive decisions on whether or not to transition to an alternative phenotype (phenotype B). 
This transition in social status is associated with many changes that can occur on a continuous timescale from rapid (seconds to hours) 
to slower (days to weeks). Examples of variables and traits most likely to occur on rapid timescales versus slower ones are indicated on 
the figure. These changes in phenotype take place on many biological levels (e.g., from whole-animal behavior to gene expression) and 
are often reversible, but may occur on different temporal scales depending on the direction of the transition (e.g., rising versus falling in 
social rank). Resulting phenotypes also have important consequences for survival and reproductive fitness. (This figure is available in 
black and white in print and in color at Integrative and Comparative Biology online.) 

Concluding comments and future 
directions 
Neuroendocrine systems governing social behavior and 
reproduction are well-conserved across vertebrates and 
very sensitive to external cues such as social signals, 
environmental cues, and previous experience, as well 
as to internal cues such as hormone levels, body con-

dition, and life-history stage. Social stimuli may trigger 
shared pathways that drive adaptive behavioral re-

sponses, which can then be modified in a species-spe-

cific manner and match an organism’s unique 
environment. Transitions in social status within an in-

dividual can be envisioned as an integration of many 
inputs (prior experience, genotype, body condition, re-

productive state, and social stimuli) that are used to 
decide whether or not to change rank, and therefore 
shape the response-dynamics of the individual’s phe-

notype (Fig. 5). This conceptual framework for transi-

tions in status requires constant evaluation of social 
stimuli from conspecifics, and the resultant changes 
can occur both on shorter and longer temporal scales 
to produce the new adaptive phenotype. Since domi-

nance hierarchies exist across the animal kingdom 
(Chase 1974; Fernald and Hirata 1977; Sapolsky 2005; 
Bonoan et al. 2013; Jandt et al. 2014), understanding 
the mechanisms that mediate transitions in social 
position at behavioral and molecular scales is impor-

tant. Many of the mechanisms involved in rapid be-

havioral and neuroendocrine changes, however, are still 
enigmatic. 

Rapid transitions in social status likely involve 
multiple mechanisms acting on different temporal 

and organizational scales (Fig. 5). Because of the 
speed inherent in behavioral plasticity, it is more 
likely that changes in behavioral state or repertoire 
are mediated by modulation of activity within exist-

ing neural networks. For example, changes in neural 
activity, possibly influenced by modulators (e.g., neu-

ropeptides, steroids, monoamines), likely precede 
changes in neurogenomic states across different 
nodes within social-decision-making networks in 
the brain (O’Connell and Hofmann 2011; Cardoso 
et al. 2015). If the behavioral change is transient, the 
organism can quickly and seamlessly revert to its 
original state via similar modulatory mechanisms. If 
the change is long-lasting, however, as is the case in 
loss or gain of territory-ownership and dominance, 
other mechanisms at the genomic or epigenetic level 
may be recruited to prepare the animal for a new 
social, behavioral, and physiological state. Baseline 
neural activity can therefore be shifted at the level 
of single neurons, or more global neural circuits, to 
initiate rapid changes in functional connectivity. 
These neural changes can then be made more per-

manent (e.g., changes in the morphology of neurons; 
synaptic connections) depending on feedback from 
the social environment. Focused experiments in 
the future that take advantage of the natural social 
transitions in A. burtoni should provide important 
insights toward identifying the cellular and molecular 
mechanisms that govern rapid behavioral plasticity, 
and how they may differ from maintenance of dom-

inant and subordinate phenotypes. 
Moving forward, there are many unanswered 

questions that deserve future study. For example, 
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how is the perception of social valence rapidly trans-

lated into adaptive phenotypic changes? What are the 
mechanisms that mediate both rapid short-term and 
slower long-term phenotypic changes associated with 
transitions in social rank? Relevant to this question 
would be an investigation into the potential role of 
neurosteroids in mediating rapid behavioral changes 
in A. burtoni. Localized release of brain-generated 
steroids in response to social signals occurs in several 
taxa (Remage-Healey et al. 2008, 2011; Do Rego 
et al. 2009), and is a likely candidate for being in-

volved in social transition in A. burtoni as well. This 
neuromodulatory role of steroids is especially prom-

ising in light of the rapid nuclei-specific changes in 
the expression of steroid receptors observed in the 
brain of ascending males (see Fig. 3), and the lack of 
correlations between levels of circulating steroids and 
behavior in transitioning A. burtoni. 

Of further interest are the questions of whether 
the mechanisms controlling social transitions are 
conserved across all taxa that exhibit social/domi-

nance hierarchies, or are they species-specific? How 
do the mechanisms that mediate rising in rank differ 
from those of falling in rank? What role(s) have 
these mechanisms played in the evolution of social 
societies? While there are many ways to approach 
these questions, it is clear that both integrative 
(across levels of biological organization) and com-

parative (across species and taxa) studies are 
needed to advance the field. One important strategy 
would be to use reverse genomics that combines 
large-scale ‘‘omic’’ approaches (e.g., transcriptomics, 
proteomics, methylomics, metabolomics) to identify 
important genes (or gene modules), proteins, signal-

ing pathways, or epigenetic mechanisms involved in 
social transitions, followed by manipulative tests 
(e.g., siRNA, pharmacology, CRISPR/Cas gene edit-

ing, optogenetics) to assign specific functions to the 
molecules or neural circuits identified by these 
approaches. Since fishes represent approximately 
50% of all vertebrates and are increasingly appreci-

ated as excellent models for understanding the com-

plexities of social interactions (Bshary et al. 2014), 
cichlids in particular are poised to contribute signif-

icant new information on how an animal’s social 
environment rapidly impacts behavior and physiol-

ogy during adaptation to a changing world. 
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