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Abstract The fish auditory system encodes important 
acoustic stimuli used in social communication, but few 
studies have examined response properties of central 
auditory neurons to natural signals. We determined the 
features and responses of single hindbrain and midbrain 
auditory neurons to tone bursts and playbacks of con-
specific sounds in the soniferous damselfish, Abudefduf 
abdominalis. Most auditory neurons were either silent or 
had slow irregular resting discharge rates \20 spikes s -1. 
Average best frequency for neurons to tone stimuli was 
*130 Hz but ranged from 80 to 400 Hz with strong 
phase-locking. This low-frequency sensitivity matches 
the frequency band of natural sounds. Auditory neurons 
were also modulated by playbacks of conspecific sounds 
with thresholds similar to 100 Hz tones, but these 
thresholds were lower than that of tones at other test 
frequencies. Thresholds of neurons to natural sounds 
were lower in the midbrain than the hindbrain. This is 
the first study to compare response properties of auditory 
neurons to both simple tones and complex stimuli in the 
brain of a recently derived soniferous perciform that 
lacks accessory auditory structures. These data demon-

strate that the auditory fish brain is most sensitive to the 
frequency and temporal components of natural pulsed 
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sounds that provide important signals for conspecific 
communication. 
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Abbreviations 
4v Fourth ventricle 
ALLn Anterior lateral line nerve 
AON Anterior octaval nucleus 
BDA Biotinylated dextran amine 
BF Best frequency 
CC Cerebellar crest 
CE Cerebellum 
CV Coefficient of variation 
DON Descending octaval nucleus 
EG Eminentia granularis 
G Nucleus glomerulosus 
IL Inferior lobe of the hypothalamus 
MgON Magnocellular octaval nucleus 
mlf Medial longitudinal fasciculus 
MON Medial octavolateralis nucleus 
PLLn Posterior lateral line nerve 
R Synchronization coefficient 
RF Reticular formation 
sgt Secondary gustatory tract 
T Tectum 
TON Tangential octaval nucleus 
TS Torus semicircularis 
VCe Valvula cerebelli 
Vde Descending tract of cranial nerve V 
VIIc Central tract of cranial nerve VII 
VIIm Facial motor nucleus 
VIIIn Cranial nerve VIII 
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VS Vector strength 
Z Rayleigh statistic 

Introduction 

Sounds detected by the inner ear are important cues used 
by fishes for predator and prey detection, and social 
interactions such as courtship and territoriality (see Zelick 
et al. 1999; Ladich and Myrberg 2006; Myrberg and Lugli 
2006). The inner ear of jawed fishes consists of three 
semicircular canals that serve a vestibular function to 
encode angular accelerations, and three otolithic endorgans 
(saccule, lagena, and utricle) that serve gravistasis and 
auditory functions to encode linear particle motion. Audi-
tory information is transferred from the hair-cell sensory 
maculae via primary afferents to several hindbrain auditory 
nuclei, ascends to the midbrain torus semicircularis (TS), 
and then to forebrain processing regions (see McCormick 
1992, 1999 for reviews). While the encoding properties of 
auditory primary afferents are relatively well-studied in 
many fishes (see Popper and Fay 1999 for review), less is 
known about how acoustic signals are encoded in higher 
processing centers of the fish brain. In addition, previous 
studies examine encoding properties in species with spe-
cialized accessory auditory structures such as the goldfish, 
catfish, herring and mormyrids (Enger 1967; Page 1970; 
Fay et al. 1982; Plassmann 1985; Lu and Fay 1993, 1996; 
Crawford 1993, 1997; Ma and Fay 2002; Suzuki et al. 
2002), those that produce high-intensity advertisement 
‘hums’ and ‘boatwhistles’ such as midshipman and toadfish 
(Bodnar and Bass 1997, 1999, 2001; Bass et al. 2001; 
Edds-Walton and Fay 2003, 2005, 2008), or less-derived 
non-vocal fishes such as the rainbow trout (Schellart 1983; 
Nederstigt and Schellart 1986; Schellart et al. 1987; 
Wubbels et al. 1993, 1995; Wubbels and Schellart 1997). 
However, response properties of single auditory neurons in 
the brain of more recently derived perciform fishes that 
produce context-dependent sounds for acoustic communi-

cation remain relatively uninvestigated. 
The general organization of octavolateralis (auditory, 

vestibular, mechanosensory) regions of the brain is known 
in several fishes based on neuroanatomical and neuro-
physiological studies (McCormick 1992, 1999; Tomchik 
and Lu 2005; Maruska and Tricas 2009). Primary afferents 
from the auditory endorgans in fishes project principally to 
five different nuclei in the hindbrain: anterior, magnocel-

lular, descending, tangential and posterior octaval nuclei. 
While several studies examine the central projections of 
auditory nerves and the neuroanatomical connections 
between the hindbrain and midbrain auditory regions, rel-
atively few neurophysiological studies on encoding 

properties of the fish hindbrain are available (Page 1970; 
Sawa 1976; Wubbels et al. 1993; Kozloski and Crawford 
2000; Fay and Edds-Walton 2000; Edds-Walton and Fay 
1998, 2003, 2005, 2008). The TS is the primary midbrain 
auditory and mechanosensory processing center in fishes 
and is composed of two main nuclei: nucleus centralis 
(NC) and nucleus ventrolateralis (NVL). Nucleus centralis 
is the acoustic processing center and is often located dorsal 
or medial to the mechanosensory NVL, although the rela-
tive positions of these nuclei vary slightly among species 
(McCormick 1992; O’Marra and McCormick 1999). The 
TS is analogous to the inferior colliculus of mammals and 
receives ascending information from the anterior, 
descending, medial, and superior olivary nuclei in the 
medulla, and descending information from the diencepha-
lon (Striedter 1991; McCormick 1992; O’Marra and 
McCormick 1999). While several studies examine the 
neuroanatomical connections of the TS, relatively few 
neurophysiological studies on encoding properties of the 
fish midbrain are available (Nederstigt and Schellart 1986; 
Lu and Fay 1993, 1996; Crawford 1993, 1997; Bodnar and 
Bass 1997, 1999, 2001; Bass et al. 2001; Edds-Walton and 
Fay 2003), and little is known about how complex sounds 
used for acoustic communication are processed in the fish 
brain. Thus, comparative studies on response properties of 
central auditory neurons across taxa are needed to test 
hypotheses on encoding abilities and sound perception in 
fishes in order to understand the evolution of acoustic-
driven sender–receiver physiologies among vertebrates. 

Damselfishes (family Pomacentridae) are one of the best 
studied fish groups for their acoustic behaviors and do not 
possess special adaptations to enhance detection of the 
sound pressure component of sound stimuli (see Zelick 
et al. 1999; Bass and McKibben 2003; Amorim 2006 for 
reviews). Several genera produce primarily broadband 
pulsed sounds during territorial and reproductive beha-
viors, which convey information on species, sex, body size, 
reproductive readiness, and aggression level (reviewed in 
Amorim 2006). Previous studies also demonstrate that both 
the frequency and temporal patterning of the pulsed sounds 
are critically important for acoustic communication in 
behaving fish (Myrberg et al. 1993; Lobel and Mann 1995; 
Myrberg and Lugli 2006). The Hawaiian sergeant fish 
Abudefduf abdominalis is a colonial benthic spawning 
damselfish that produces low-frequency, low-intensity 
pulsed sounds associated with reproductive and agonistic 
behaviors, and the frequency hearing range matches the 
spectral components of sounds produced by naturally 
behaving wild fish (Maruska et al. 2007). The neuroana-
tomy of the hindbrain octavolateralis system is described 
for this species as similar to non-vocal perciforms 
(Maruska and Tricas 2009). However, despite the impor-

tance of damselfishes in hearing and acoustic behavior 

123 



J Comp Physiol A (2009) 195:1071–1088 1073 

research, nothing is published on the encoding properties of 
auditory signals at the level of single neurons in the brain 
of any damselfish species. 

The purpose of this study was to assess natural signal 
processing and response properties of auditory neurons 
within the octaval nuclei of the medulla and the midbrain 
TS of the Hawaiian sergeant fish. The auditory system was 
stimulated with both traditional tone bursts as well as 
playbacks of natural and more complex conspecific signals. 
Results of this study demonstrate that the auditory fish 
brain is most sensitive to the frequency and temporal 
components of natural pulsed sounds that provide impor-

tant signals for conspecific communication. 

Methods 

Experimental animals 

Adult male and female (x� standard length = 124.2 ± 
7.9 mm; x� body mass = 77.5 ± 16.3 g) Hawaiian sergeant 
fish, Abudefduf abdominalis, were caught with hook and 
line from Kane’ohe Bay, Oahu and used immediately in 
neurophysiology experiments (average time from capture 
to anesthetization = 10 min). At the end of each experi-
ment, fish were measured for standard length and total 
length to the nearest 0.5 mm, body mass to the nearest 
0.1 g, and sex determined by examination of sexually 
dimorphic genital papillae under a dissection microscope. 

Neurophysiology experiments 

Single cell extracellular recordings were made from the 
auditory region of the TS in the midbrain and the octaval 
nuclei in the medulla. Fish were anesthetized in a solution 
of 0.2% benzocaine and immobilized with an injection of 
pancuronium bromide (*0.001 mg g -1 body mass). Fish 
were then positioned in an acrylic head holder and fixed in 
position by stainless steel screws inserted laterally into the 
cranium behind the eyes. The fish was suspended so that 
the inner ear was beneath the water surface and 10 cm 
above an underwater loudspeaker (UW-30; Lubell Labo-
ratories) partially buried in gravel on the bottom of a 30-cm 
diameter Nalgene experimental tank (design similar to Fay 
1990; McKibben and Bass 1999; Sisneros and Bass 2003). 
The tank rested on a vibration isolation table (Technical 
Manufacturing Corporation) inside a sound isolation 
chamber (Industrial Acoustics). All recording and stimulus 
generation equipment were located outside of the acoustic 
booth. Fish were continuously ventilated with seawater 
(water temperature 23–25�C; salinity 34–36 ppt; without 
anesthetic) that was pumped from the experimental 
tank through the mouth and over the gills during all 

experiments. The brain was exposed by dorsal craniotomy 
and the cranial cavity filled with Fluorinert fluid (FC-75, 
3M) to enhance clarity, reduce bleeding, and prevent 
drying. 

Extracellular single unit discharges were recorded with 
either glass microelectrodes (*15–35 MX) filled with 4 M 
sodium chloride or carbon fiber carbostar-1 electrodes 
(400–800 kX; Kation Scientific, Inc.) that were advanced 
manually through the tectum down to the TS, or to the 
octaval nuclei in the medulla. All of the hindbrain neurons 
and the majority of TS neurons ([85%) analyzed in this 
study were recorded with the low-impedance carbon fiber 
electrodes, which increased the chances of recording from 
secondary neurons rather than axons of primary afferents. 
Initial tracts through the 8th nerve as it enters the medulla 
confirmed that it was difficult to isolate single primary 
afferent discharges with these electrodes (strong multi-unit 
recordings were common). This fact, combined with the 
recording locations verified by manipulator coordinates 
and Biotinylated Dextran Amine (BDA) labels (see below), 
provides support that most hindbrain recordings were not 
primary afferents. 

An auditory search stimulus (100 or 200 Hz tone bursts 
at 124–126 dBrms re: 1 lPa; 10 ms rise and fall; 20 ms 
plateau; 8.3 Hz repetition rate) was presented to the animal 
while the electrode was advanced through the brain, and 
action potentials were monitored visually (oscilloscope) 
and acoustically (loudspeaker). Only those units that 
showed a clear response modulation to the underwater 
speaker stimulus were recorded and classified as auditory 
units. Units verified as lateral line (response to water 
movement or touch near canals), somatosensory (response 
to touch), or other (unknown; no response to any stimulus) 
were not included in analyses. Neural discharges were 
amplified (9500–910,000) and filtered (100–5,000 Hz) 
(Neurolog system, Digitimer Inc.), and then converted to 
digital files via a Cambridge Electronics Design (CED) 
power 1401 system and recorded on a computer with 
associated Spike 2 software. 

Stimulus generation 

Acoustic stimuli were generated by the CED digital to 
analog converter controlled by Spike 2 software, attenuated 
(CED 3505 programmable attenuator), amplified (Peavey 
stereo amplifier UMA 352), and played through an under-
water loudspeaker (UW-30, Lubbell Labs, frequency 
response 100 Hz–10 kHz) positioned beneath the fish. Prior 
to experiments, a calibrated mini-hydrophone (Bruel and 
Kjaer 8103) was positioned at the location normally occu-
pied by the fish head, and a stimulus routine run to generate 
a frequency–stimulus amplitude lookup table. This table 
was then used by the stimulus generation script to produce 
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fixed stimulus sound pressure levels across test frequencies 
(80–800 Hz). These data were used to construct the iso-
intensity response curves. Stimuli consisted of 100 repetitions 
of 40 ms ramped tone bursts (10 ms rise and fall; 20 ms 
plateau; 8.3 Hz repetition rate) at frequencies of 80–800 Hz 
(80, 100, 200, 300, 400, 500, 600, 800 Hz). The frequency 
response of the loudspeaker was also verified with the mini-

hydrophone positioned in the tank at the spot normally 
occupied by the fish inner ear. Relative sound pressure 
levels (SPL) were calculated for each frequency and 
intensity by measuring the root mean square (rms) voltage 
at the position normally occupied by the fish head and 
converted to SPL in dBrms re: 1 lPa. Sound pressure levels 
used during these recordings ranged from 80 to 146 dBrms 

re: 1 lPa. This experimental tank setup was similar to that 
used in other fish auditory physiology studies that demon-

strated: (1) the primary axis of particle motion is in the 
vertical plane, orthogonal to the surface of the underwater 
speaker (McKibben and Bass 1999), and (2) reflections 
from the tank walls and water surface do not alter the sound 
pressure waveform of the acoustic signals (Bodnar and Bass 
1997; 1999). Our own hydrophone recordings above the 
speaker at the position normally occupied by the fish head 
and body confirmed there were no alterations of the 
waveform from tank reflections. 

While the damselfish is likely primarily sensitive to 
particle motion, it remains difficult to measure sound levels 
from underwater speakers in terms of particle displace-
ment, and the relationship between particle motion and 
pressure in small tanks is complex (Parvulescu 1967). One 
important feature is that measures of particle motion and 
pressure have a frequency-dependent proportionality that 
varies with tank configuration and sound source. However, 
by placement of the fish close to an isointensity stimulus 
source, frequency-dependent differences in the relative 
contributions of particle flow and pressure are minimized. 
Such measures of responses to sound pressure levels close 
to the source may be of limited utility for some species far 
from the source, but do provide reasonable estimates of 
sensitivity for comparison of species sensitive to particle 
motion among studies that use similar experimental setups 
(see also McKibben and Bass 1999; Weeg et al. 2002; 
Sisneros 2007; Horodysky et al. 2008). Furthermore, in the 
midshipman fish, another species thought to be primarily 
sensitive to particle motion, saccular primary afferent 
recordings showed that the isointensity curves based on 
pressure are similar in shape to isointensity curves based on 
particle motion, which provides additional support that 
constant pressure stimuli do not misrepresent auditory 
tuning properties in particle motion-sensitive fishes (Weeg 
et al. 2002; Sisneros 2007). 

Playbacks of natural A. abdominalis sounds recorded in 
the field were also used to test the responses of auditory 

neurons in the midbrain and medulla. These sounds were 
recorded with a hydrophone and DAT recorder from nat-
urally behaving fish in the wild. Four different natural 
sounds were tested: aggressive pulse train (*800 ms 3 
pulse train), courtship-female visit (*2,000 ms train), nest 
preparation (*1,600 ms train), and courtship-female visit 
A pulse train (*5,000 ms train) sounds (for details on field 
recordings and sound characteristics see Maruska et al. 
2007). These sounds were generated and presented as 
described above for the tone bursts except that 50 repeti-
tions were used for aggressive pulse train and nest prepa-
ration sounds, and 10 repetitions for the two courtship 
sounds. Sound pressure levels in dBrms re: 1 lPa were 
determined with a calibrated hydrophone and calculated as 
described above. Waveforms of these complex stimuli 
recorded by the hydrophone at the position normally 
occupied by the fish head and body were spectrally similar 
to the driver waveform files and showed no significant 
distortion. Any non-linear sound pressure features were 
corrected for during calibration with the stimulus genera-
tion script as described above for sinusoidal stimuli. 
Thresholds for these natural sounds were determined as the 
lowest intensity to show a peri-stimulus time histogram 
with increased spike rates that were two standard devia-
tions above background correlated in time with the stim-

ulus waveform. 

Data analysis 

Data analysis was performed both on- and off-line with 
Spike 2 software (CED) and values are reported as 
mean ± standard deviation. Spontaneous (resting) dis-

charge rates were recorded for each unit in the absence of 
stimulation, and then used to generate interspike interval 
(ISI) histograms with 2 ms bins. A minimum of 500 spikes 
of resting activity were recorded prior to stimulation, with 
the exception of silent units. The coefficient of variation 
(CV), which is a dimensionless ratio of standard deviation 
to mean interspike interval was also calculated for each 
unit to estimate relative variability in resting discharge 
patterns. Units with resting activity were classified as 
regular (normal distribution; CV B 0.40) or irregular 
(Poisson-like distribution; CV [ 0.40) based on the shape 
of their interspike interval histogram and CV values. 

Once resting rate data were recorded, the first stimulus 
frequency was tested. Thresholds were determined for each 
test frequency by starting with a suprathreshold intensity 
followed by decreasing intensities in 5-dB steps until the 
unit no longer responded to the stimulus. Threshold was 
defined as the lowest intensity to evoke a significant Z 
value (C4.5; see below), and best frequency (BF) was 
defined as the frequency with the lowest threshold. Neuron 
responses to tone bursts were quantified for vector strength 
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(VS) (or synchronization coefficient, R) across the entire 
stimulus cycle. VS was calculated according to Goldberg 
and Brown (1969) and is a measure of the degree of phase-
locking to a periodic signal determined by the mean vector 
length for the circular distribution of spikes over the 
stimulus period. VS varies from zero (random distribution; 
no phase-locking) to one (all spikes fall in the same bin; 
strong phase-locking). The degree of phase-locking was 
determined to be a better predictor of auditory frequency 
encoding among vertebrates compared to maximum 
evoked spike rates for frequencies B1 kHz (Fay 1978a, 
1982, 1994; Javel and Mott 1988; Sisneros and Bass 2003). 
The significance of phase-locking was determined by cal-
culation of the Rayleigh statistic, Z. Z is defined as R2 9 N, 
where N is the total number of spikes sampled. The prob-
ability of observing Z C 4.5 by chance is 0.01 (Batschelet 
1981), thus responses with Z values C4.5 were significantly 
phase-locked (Lu and Fay 1993). 

Identification of recording sites 

Electrode positions were labeled in several individuals to 
verify recordings were made within the TS of the midbrain 
(N = 7) and the octaval nuclei of the hindbrain (N = 8). 
Multi-barrel electrodes (carbostar-4; Kation Scientific, 
Inc.) were filled with Texas Red or Fluorescein BDA 
neuronal tracers (Vector Laboratories). The electrode was 
advanced to the auditory TS or medulla and following the 
single unit recording, the neuronal tracer was pressure 
ejected (*5–20 9 30 ms pulses at 20–30 psi; Picospritzer 
II, General Valve Corp.). At the end of the experiment, the 
fish was either perfused with 0.9% heparinized saline fol-
lowed by 4% paraformaldehyde in 0.1 M phosphate buffer 
(PB), or the brain just removed and placed in the fixative. 
Brains were then postfixed for 24 h, rinsed in 0.1 M PB, 
cryoprotected in 30% sucrose in 0.1 M PB overnight, and 
sectioned in the transverse plane at 24 lm on a cryostat. 
Brain sections were collected onto chrom-alum coated 
slides, dried at room temperature overnight, and covers-
lipped with vectashield mounting media (Vector Labora-
tories) for visualization on a Zeiss Axioskop 2 fluorescent 
microscope. Monochrome photographs were taken with an 

�Optronics Macrofire digital camera attached to the fluo-
rescent microscope and some were digitally inverted with 
Adobe Photoshop software. 

Results 

Identification of recording sites 

Recording sites in the auditory midbrain (N = 7) and 
hindbrain (N = 8) were verified by label with fluorescent-

conjugated BDAs (Fig. 1). Midbrain recording sites were 
all localized to the dorso-lateral TS at *1.5–2.5 mm below 
the surface of the tectum, while hindbrain recording sites 
were localized primarily to the intermediate region of the 
descending octaval nucleus (DONi), and a few to the 
magnocellular octaval nucleus (MgON) (Fig. 1). Not all 
recording sites were labeled, but correspondence between 
brain surface landmarks, manipulator coordinates and 
labeled sites verified that all recordings were likely made 
within the TS or the octaval nuclei. 

Resting discharge activity 

Midbrain 

Resting discharge activity was recorded for a total of 109 
single auditory neurons in the TS of 33 fish. Two general 
resting discharge patterns were observed in auditory units 
of the TS: silent and irregular (Fig. 2a). The mean resting 
discharge rate for TS auditory units was 13.5 ± 15.6 spi-

-1 -1kes s and ranged from 0 spikes s (or silent) to 
55 spikes s -1 (Fig. 2b), but were variable across this 
range. The majority of units had resting rates B20 spi-
kes s -1 (71%), while 33% were silent, and 27% had resting 
rates [20 spikes s -1. The mean CV for all spontaneously 
active units was 0.81 ± 0.07, and all were characterized 
with irregular discharge patterns (CV values C 0.40). 
There was also a positive relationship between mean in-
terspike interval and CV for single midbrain units (linear 
regression; P = 0.04). 

Hindbrain 

Resting discharge activity was recorded from a total of 73 
single auditory neurons in the medulla of 16 fish. The mean 
resting discharge rate for hindbrain auditory units was 

-1 -111.0 ± 15.6 spikes s and ranged from 0 spikes s (or 
silent) to 74.6 spikes s -1 (Fig. 2). The majority of hind-
brain units also had resting rates B20 spikes s -1 (82%), 
while 32% were silent, and 18% had resting rates 
[20 spikes s -1. The mean CV for all spontaneously active 
units was 0.98 ± 0.5, and all were characterized with 
irregular discharge patterns (CV values C 0.40). In con-
trast to midbrain units, there was no relationship between 
mean interspike interval and CV for single hindbrain 
neurons (linear regression; P = 0.49). 

There was no difference in resting discharge rate among 
non-silent midbrain and hindbrain neurons (Mann–Whit-

ney rank-sum test, P = 0.47), but CV values were higher 
in the medulla compared to the TS (Table 1; Mann– 
Whitney rank-sum test, P = 0.02). Hindbrain and midbrain 
neurons had a similar percentage of silent units, but the 
hindbrain had twice as many units with resting discharges 
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Fig. 1 Verification of recording sites in the auditory torus semicirc- through the rostral medulla shows the location of several labeled 
ularis and medulla of the Hawaiian sergeant fish, Abudefduf recording sites within the magnocellular octaval nucleus (MgON) 
abdominalis. a Representative transverse section through the brain superimposed on a single section. e Representative transverse section 
shows the location of seven labeled recording sites (dots) within the through the caudal medulla shows several labeled recording sites in 
dorso-lateral torus semicircularis of the midbrain, superimposed on a the descending octaval nucleus (DON) superimposed on a single 
single section. b FITC-BDA label of a single recording site (arrow) in  section. For a, d, and e, left side is stained with cresyl violet and right 
the torus semicircularis (TS). c Higher magnification of the single is the inverted camera lucida drawing. See list for other abbreviations. 
recording site shown in b. Arrows indicate labeled torus cell bodies in Scale bars 1 mm (a, d, e), 100 lm (b) 5  lm (c) 
the vicinity of the recording site. d Representative transverse section 

from 1 to 15 spikes s -1 compared to the more variable 
resting rates of the TS (see Fig. 2b). 

Response to tone bursts: frequency response, 
phase-locking, threshold, and level encoding 

Auditory neurons in the midbrain TS and medulla of the 
Hawaiian sergeant fish responded with an increase in spike 
rate and some degree of phase-locking to tone stimuli from 
80 to 800 Hz. Auditory neurons in the midbrain showed 
phasic responses with more action potentials during the 
start of the stimulus burst (e.g., cycles 1–3) compared to 
later cycles, and a small percentage of units (25%) also 
responded to the offset of the stimulus (Fig. 3). This same 
response to the offset of the stimulus burst was not 
observed in any neurons of the auditory medulla. 

Midbrain 

BFs for auditory neurons in the TS ranged from 80 to 
300 Hz (Fig. 4). Mean BF was 126.7 ± 55.5 Hz and the 
majority of neurons (60%) had a BF at 100 Hz, while 16 
and 23% had BFs of 80 and 200 Hz, respectively. There 
were no neurons with BFs above 300 Hz in the auditory TS 
(Fig. 4). 

Threshold tuning curves were determined for a total of 
88 auditory neurons in the TS of 28 fish (Figs. 5, 6). 
Thresholds to tone burst stimuli ranged from 104.2 ± 
9.3 dBrms re: 1 lPa at 100 Hz to 141.8 ± 5.5 dBrms re: 
1 lPa at 800 Hz (Fig. 5). Thus, there was an average 
dynamic range of 35–40 dB between mean thresholds at 
the BF (100 Hz) and maximum frequency (800 Hz). Most 
neurons in the TS were sharply tuned to low frequencies 
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Fig. 2 Resting discharge a Torus semicircularis Medulla 
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with steep fall offs at higher frequencies (29.5 ± 
3.3 dB octave -1 from 400–800 Hz), but there were also 
some units that showed broader tuning (12.2 ± 4.5 dB 
octave -1 from 400 to 800 Hz; Fig. 5). Further, some units 
did not respond to frequencies above 300–400 Hz, even at 
the highest intensity levels tested. Threshold tuning curves 
for five individual neurons are plotted in Fig. 5a to illus-
trate the variability in threshold levels, tuning curve shape, 
and BF among units. Thresholds of individual auditory 
neurons were also variable, with a minimum threshold of 
86 dBrms re: 1 lPa detected at 100 Hz. The greatest dif-
ference between minimum and maximum threshold was at 
200 Hz (54 dB), and the smallest differences were at 
800 Hz (20 dB) and 100 Hz (23 dB). These low-frequency 
response properties of the auditory system are also matched 
to the frequency components of the natural conspecific 
sounds produced by this species (Fig. 6a). The greatest 
energy of all conspecific sounds is from \80 to 400 Hz, 
which corresponds to the best frequency sensitivity 
of auditory neurons in both the midbrain and hindbrain 
(80–400 Hz). 

In the Hawaiian sergeant fish, all of the auditory neurons 
in the TS showed significant phase-locking at threshold and 
suprathreshold levels (Fig. 7a). When calculated at 5 dB 
above threshold at each units’ BF, 44 and 56% of units 
showed weak (VS \ 0.5) and strong (VS C 0.5) phase-
locking, respectively. In contrast, when calculated at a near 
isointensity level (119–124 dB) at the same frequency 
(100 Hz), there were fewer weak (24%) and more strong 
(76%) phase-locked neurons (Fig. 7a). Vector strength and 
Rayleigh statistic values were both higher at the supra-
threshold values calculated at 100 Hz (x� VS = 0.63 ± 
0.18; x Z� = 72.1 ± 53.1) compared to those determined at 
5 dB above threshold at the units’ BF (x� VS = 0.55 ± 
0.23; x Z� = 19.6 ± 16.1) (Mann–Whitney rank-sum tests, 
P = 0.02 for VS; P \ 0.001 for Z). Examples of period 
histograms from individual neurons with weak and strong 
phase-locking abilities are shown in Fig. 5b. Phase-locking 
ability rather than evoked spike rate is thought to be a 
better predictor of frequency encoding in the fish auditory 
system, especially at frequencies B1 kHz (Fay 1978a, b, 
1982, 1994; McKibben and Bass 1999; Sisneros and Bass 
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Table 1 Resting discharge and 
Torus semicircularis Medulla P 

response properties of single 
auditory neurons in the -1Resting discharge (spikes s ) 
midbrain torus semicircularis 
and medulla of the Hawaiian 
sergeant fish Abudefduf 
abdominalis Coefficient of variation (CV) 

Best frequency (Hz) 

Vector strength at BF 

Threshold to 

100 Hz tone burst 

Courtship-female visit sound 
Hindbrain units were recorded 
from the descending octaval and 
magnocellular octaval nuclei. 
Data are expressed as Courtship A pulses sound 
mean ± standard deviation (top 
line), 25%, median, and 75% 
values (middle line), and range 
(in parentheses on bottom line). Aggressive pulse train sound 
Thresholds are in dBrms re: 
1 lPa. Differences between the 
midbrain torus semicircularis 

Nest preparation soundand medulla were tested with 
the Mann–Whitney rank-sum 
test and bold numbers with 
asterisks indicate P \ 0.05 

2003). Examples of average evoked spike rates and vector 
strength values for two individual neurons calculated at 
near isointensity levels (130 ± 5 dB re: 1 lPa) show the 
differences in these parameters (Fig. 5c). The neuron in the 
top left panel of Fig. 5c had a resting discharge of 
7.6 spikes s -1 and showed strong phase-locking (high VS) 
from 80 to 200 Hz, but elevated evoked spike rates from 80 
to 500 Hz. The neuron in the lower left panel was silent 
and showed strong phase-locking (VS [ 0.80) and elevated 
spike rates from 80 to 300 Hz. However, notice the highest 
VS value occurs at the lowest evoked spike rate for this 
neuron at 300 Hz. This unit also showed no response to 
frequencies from 400 to 800 Hz at this intensity level. 
These data highlight the variability and complexity of 
response properties in both the midbrain and hindbrain and 
that individual neurons may use either spike rate or VS to 
encode frequency information depending on sound fre-
quency and intensity. 

Vector strength at BF for midbrain TS neurons also 
showed an inverse relationship with resting discharge rate 
(linear regression, P \ 0.001) (Fig. 7b). Vector strength 

13.5 ± 15.6 11.0 ± 15.6 0.47 

0, 6.2, 23.1 0, 4.8, 14.7 

(0–55) (0–75) 

0.81 ± 0.07 0.98 ± 0.5 0.02* 

0.67, 0.77, 0.91 0.74, 0.90, 1.2 

(0.41–1.6) (0.41–1.7) 

126.7 ± 55.5 134.8 ± 75.9 0.86 

100, 100, 200 100, 100, 200 

(80–300) (80–400) 

0.55 ± 0.23 0.59 ± 0.21 0.20 

0.34, 0.53, 0.75 0.46, 0.62, 0.74 

(0.18–0.96) (0.12–0.96) 

104.2 ± 9.3 105.5 ± 12.5 0.37 

97, 101, 111 96, 106, 116 

(86–129) (81–136) 

105.7 ± 3.5 109.6 ± 5.6 0.009* 

104, 105, 107 104, 109, 115 

(103–120) (103–120) 

104.5 ± 2.8 106.9 ± 3.9 0.002* 

103, 104, 105 104, 105, 109 

(102–117) (102–117) 

103.5 ± 2.5 104.7 ± 3.0 0.04* 

102, 103, 103 103, 104, 106 

(100–114) (102–114) 

105.0 ± 3.6 106.2 ± 3.6 0.06 

103, 103, 106 103, 105, 110 

(103–119) (103–114) 

values for silent units ranged from 0.20 to 0.97, but silent 
units and those with slow resting discharges had higher 
average vector strength values than those with higher 
resting discharges. 

Response-level curves for auditory neurons in the TS in 
response to tone bursts at the BF of 100 Hz are shown in 
Fig. 8. Rate-intensity curves show that as sound level is 
increased, discharge rate increases as a near monotonic 
function of stimulus intensity, but individual neurons can 
vary in dynamic range and slope. In comparison, the syn-
chronization-intensity curves show that vector strength also 
increases with increased sound intensity, but often reaches 
a plateau at higher intensities while spike rate continues to 
increase (Fig. 8). 

Hindbrain 

BFs for auditory neurons in the hindbrain ranged from 80 
to 400 Hz (Fig. 4). Mean BF for hindbrain neurons was 
134.8 ± 75.9 Hz, and the majority of neurons (49%) had a 
BF at 100 Hz, while 22 and 23% had BFs of 80 and 

123 

https://0.12�0.96
https://0.18�0.96


Torus semicircularis 

  

ON OFF

100 Hz stimulus 

Neural response 
N

um
be

r 
of

 s
pi

ke
s 100 

50 

0 

Time (s) 

N
um

be
r 

of
 s

pi
ke

s 

Period8 

4 

0 

Sinusoid cycle (deg) 

Fig. 3 Responses of representative single auditory neurons to a 
100 Hz tone burst. Top two traces show a single 100-Hz stimulus tone 
burst and resultant neural response. The peri-stimulus time histogram 
(PSTH) shows the neural responses binned over 100 successive 
stimulus presentations. Note the strong phase-locking and offset 

PSTH 

0.00 0.01 0.02 0.03 0.04 0.05 

Medulla 

Histogram 

VS = 0.60 
Z= 59.3 
rest rate = 2.2 spikes s-1 

-90 0 90 180 270 

ON OFF

100 

50 

0 

Time (s) 

0.00 0.01 0.02 0.03 0.04 0.05 

14 

VS = 0.82 
Z= 183.0 

7 rest rate = 4.9 spikes s-1 

0 

-90 0 90 180 270 

Sinusoid cycle (deg) 

response to the stimulus in the TS unit. Bottom graphs show the 
period histograms of each unit relative to single sinusoid cycles. ON 
and OFF indicate the onset and offset of the 40-ms stimulus. 
VS vector strength, Z Rayleigh statistic 

J Comp Physiol A (2009) 195:1071–1088 1079 

200 Hz, respectively. No neurons with BFs above 400 Hz 
were identified in the auditory hindbrain (Fig. 4). 

Threshold tuning curves were determined for a total of 
69 auditory neurons in the medulla of 16 fish (Figs. 5, 6). 
Thresholds ranged from 105.3 ± 12.5 dBrms re: 1 lPa at 
100 Hz to 141.5 ± 8.5 dBrms re: 1 lPa at 800 Hz 
(Fig. 5a). Thus, there was an average dynamic range of 
35 dB between mean thresholds at the best (100 Hz) and 
worst frequency (800 Hz). Many neurons in the hindbrain 
were more broadly tuned compared to those in the mid-

brain with a mean fall-off of 21.5 ± 6.4 dB octave -1 from 
400 to 800 Hz, but there were also some neurons with 
sharp tuning similar to midbrain units. Threshold tuning 
curves for several individual neurons are plotted in Fig. 5a 
to illustrate the variability in threshold levels, tuning curve 
shape, and BF among medullary units. Thresholds of 
individual hindbrain neurons were also variable, with a 
minimum threshold of 81 dBrms re: 1 lPa detected at 
100 Hz. The greatest difference between minimum and 
maximum threshold was at 300 Hz (58 dB), and the 
smallest difference was at 800 Hz (33 dB). 

Similar to the midbrain, all hindbrain auditory units 
showed significant phase-locking at threshold and supra-
threshold levels (Fig. 7a). At 5 dB above threshold at BF, 
phase-locking was weak for 28% of units (VS \ 0.5) and 
strong for 72% (VS C 0.5). When calculated at a near 
isointensity level (119–124 dB) at 100 Hz, the proportions 
of weak (26%) and strong (74%) phase-locked neurons 
were maintained. Rayleigh statistic values, but not vector 
strength, were higher at the suprathreshold values calcu-
lated at 100 Hz (x� VS 0.65 ± 0.20; � = 98.6 ± 80.3)= x Z  
compared to those determined at 5 dB above threshold at 
BF (� VS = 0.59 ± 0.21; x Z  = 26.9 ± 25.8) (Mann– x � 
Whitney rank-sum tests, P = 0.14 for VS; P \ 0.001 for 
Z) (Fig. 7a). Examples of period histograms from indi-
vidual hindbrain neurons with weak and strong phase-
locking abilities are shown in Fig. 5b. Average evoked 
spike rates and vector strength values calculated at near 
isointensity levels (130 ± 5 dB re: 1 lPa) for two repre-
sentative hindbrain units show differences in these fea-
tures (Fig. 5c). The neuron in the top right panel of 
Fig. 5c had a resting discharge of 2.8 spikes s -1, weak 
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shown in Fig. 8. Rate-intensity curves show the variability 
in response patterns among units. Spike rates of some units 
increase as a monotonic function of stimulus intensity. 
However, other neurons show little or no change in spike 
rate as sound level increased. Further, the synchronization-
intensity curves show that vector strength increases with 
sound intensity in some neurons, but also shows non-
monotonic functions in others. Thus, spontaneous activity 
can be redistributed in time to increase phase-locking 
without a change in spike rate. Vector strength values also 
decreased at higher intensities in some units due to multiple 
discharges per stimulus cycle, especially at low frequencies 
(e.g., 80–100 Hz) (Fig. 8). 

Response to complex conspecific sounds 

Response properties of single auditory neurons in both the 
midbrain TS and medulla of the Hawaiian sergeant fish 
also match the frequency components of natural sounds 
produced by this species in the wild (Fig. 6). Power 
spectra of the four natural conspecific sounds used as 
playback stimuli in this study show peak energy compo-

nents at low frequencies from \80 to 400 Hz, and 
decreased energy (10–30 dB lower) from 500 to 
1,000 Hz. Thus, central auditory neurons are well-suited 
to detect the low-frequency spectral components of nat-
ural sounds. 

VS (\0.50), strong phase-locking (Z C 4.5) and elevated 
spike rates from 80 to 500 Hz. In contrast, the neuron in 
the lower right panel was silent but also showed very 
strong phase-locking (VS [ 0.90) from 80 to 400 Hz and 
a clear peak in spike rate at 200 Hz. This unit also 
showed no response to frequencies from 500 to 800 Hz at 
this intensity level. 

Similar to the midbrain, there was also a negative rela-
tionship between vector strength at BF and resting dis-
charge rate for hindbrain auditory neurons (linear 
regression, P \ 0.001) (Fig. 7b). Vector strength values for 
silent units ranged from 0.12 to 0.96, but silent units and 
those with slow resting discharges had higher average 
vector strength values than those with higher resting dis-
charges. There was no difference in BF, vector strength at 
BF, or threshold at 100 Hz between midbrain and hind-
brain auditory neurons (Table 1; Mann–Whitney rank-sum 
tests, P [ 0.05). 

Response-level curves for auditory neurons in the 
medulla in response to tone bursts at the BF of 100 Hz are 

Midbrain 

Auditory neurons in the TS modulated well to playbacks 
of pulsed natural complex sounds (Fig. 9). In all cases, 
individual pulses from each sound type were temporally 
represented at the single neuron level in the auditory TS. 
Mean thresholds to playbacks of natural sound waveforms 
ranged from 103.5 ± 2.4 dBrms re: 1 lPa for the aggres-
sive pulse train sound to 105.7 ± 3.5 dBrms re: 1 lPa for 
the courtship-female visit sound (Fig. 6c). Thresholds to 
natural sound stimuli are all within ±2 dB of the mean 
threshold at 100 Hz for the tone bursts (see Fig. 6). 
However, thresholds for all four natural sounds were 
lower than thresholds determined for tone bursts at all 
other frequencies (80, 200–800 Hz) (Kruskal–Wallis one-
way ANOVA on ranks, P \ 0.001; Dunn’s method, 
P B 0.05). Auditory neurons in the midbrain also had 
lower thresholds (1–4 dB lower) to the complex conspe-
cific sounds compared to the hindbrain neurons (Table 1; 
Fig. 6d). 

Hindbrain 

Similar to the midbrain, individual pulses from each 
sound type were temporally represented at the single 
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Discussion 

This is the first study to compare response properties of 
auditory neurons to both simple tone and complex conspe-
cific stimuli in both the hindbrain and midbrain TS of a 
perciform soniferous fish that lacks accessory hearing 
structures. Hindbrain and midbrain auditory neurons in the 
Hawaiian sergeant fish had slow resting discharge rates, high 
phase-locking ability, and were most sensitive to low-fre-
quency tone stimuli from 80 to 400 Hz. In addition, central 
auditory neurons were modulated by playbacks of complex 
natural conspecific sounds with mean thresholds similar to 

neuron level in the auditory medulla (Fig. 10). Mean 
thresholds to playbacks of natural sound waveforms ran-
ged from 104.7 ± 3.0 dBrms re: 1 lPa for the aggressive 
pulse train sound to 109.6 ± 5.6 dBrms re: 1 lPa for the 
courtship-female visit sound (Fig. 6c). Thresholds to 
natural sound stimuli are all within ±2 dB of the mean 
threshold at 100 Hz for the tone bursts, and similar to the 
TS, thresholds for all four natural sounds were lower than 
thresholds determined for tone bursts at all other fre-
quencies (80, 200–800 Hz) (Kruskal–Wallis one-way 
ANOVA on ranks, P \ 0.001; Dunn’s method, P B 0.05) 
(see Fig. 6). 
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Fig. 6 Response of neurons in the midbrain torus semicircularis and the auditory brain. N number of animals, number of units. 
medulla in response to sinusoid tone bursts and stimulus thresholds to b Waveforms of the four natural conspecific sounds used as playback 
playbacks of four natural conspecific sounds of different behavioral stimuli for neurophysiology recordings. Scale bars 100 ms. c Thresh-
contexts. a Comparison of audiograms of neurons in the midbrain olds for all four natural sound stimuli in the TS were 104–106 dB re: 
torus semicircularis (TS) and medulla in response to tone burst stimuli 1 lPa, which is ±2 dB of the mean threshold for tone bursts at 
and frequency spectra of the conspecific sounds used as stimuli. 100 Hz, but lower than thresholds for all other frequencies. Similarly, 
Audiogram data are plotted as the mean ± SE for the TS (closed thresholds for all four natural sounds in the medulla were 105–110 dB 
circles) and the medulla (open circles), and are referenced to the left re: 1 lPa. Data are plotted as medians and quartiles with error bars. 
y-axis. Power spectra (512 point FFT) of representative pulses from d Midbrain TS neurons were 1–4 dB more sensitive to all conspecific 
the four natural sounds used as playbacks are plotted as relative sounds compared to the medulla under these experimental conditions. 
amplitude in dB (right y-axis) to illustrate the match between Data are plotted as the change in median dB between TS and medulla 
frequency content of natural sounds and the low-frequency tuning of for each sound type. N number of animals, number of units 

that of tones at 100 Hz, but lower than those of tone bursts at 
all other frequencies. Midbrain neurons were also more 
sensitive to conspecific sounds compared to hindbrain 

neurons. These data demonstrate that both frequency and 
temporal information from the pulsed natural sounds pro-
duced by the Hawaiian sergeant fish are represented in the 
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auditory hindbrain and midbrain. Further studies are needed 
to determine which characteristics of natural sounds are 
important for auditory discrimination of different behaviors. 

Resting discharge activity 

The range of resting discharge activities for auditory neu-
rons in the pomacentrid sergeant fish TS are similar to 
those reported for species in broad taxonomic groups. 
However, the mean discharge rate  of 13.5 spikes s- 1 is 
approximately twice that reported for the salmonid trout 
(Schellart et al. 1987), cyprinid goldfish (Lu and Fay 1993) 
and mormyrid (Crawford 1993). In contrast, a lower resting 
rate of *0.5 spikes s -1 was reported for the batrachoidid 
toadfish TS (Edds-Walton and Fay 2003). Further, the 
mean spike  rate of 11 spikes s -1 for hindbrain units of the 
Hawaiian sergeant is similar to that of the toadfish DON 
(Edds-Walton and Fay 2008), but less than half that 
reported for the trout (Wubbels et al. 1993) and twice that 
for the goldfish (Page 1970). The cause or influence of the 
relatively high spontaneous discharge in the sergeant fish 
TS in auditory signal processing are still undetermined, but 
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.6

frequencies of 80–400 Hz, which matches the relative 
frequency spectrum of sounds produced by this species (see 
Fig. 6 and Maruska et al. 2007). Previous studies suggest 
that auditory units at higher processing levels show pro-
gressively sharper tuning (i.e., TS units are more sharply 
tuned than primary afferents) (Page 1970; Lu and Fay 
1993). It is difficult to comment on whether this hypothesis 
is supported in the Hawaiian sergeant fish until recordings 
from primary afferents are made, and additional stimulus 
frequencies between 100 and 300 Hz are tested (i.e., finer 
frequency resolution) in the region of best sensitivity. 
However, hindbrain neurons generally showed broader
tuning curves compared to midbrain neurons. These data 
indicate presence of a filtering mechanism between hind-
brain and midbrain levels that may function through 
inhibitory interactions to sharpen the frequency response at 
higher processing centers (Lu and Fay 1996; Feng and 
Schellart 1999). Inhibitory response areas adjacent to the 
neuron’s excitatory area are often observed in two-tone 
interaction experiments in the fish TS, but not in earlier 
processing regions (Lu and Fay 1996; Feng and Schellart 
1999). Sharpened midbrain tuning to stimuli around 
100 Hz supports an importance of this low-frequency 
spectral information, possibly to facilitate acoustic com-

munication or predator and prey detection. A similar situ-
ation exists in the toadfish brain where neurons from the 
midbrain TS had a lower mean BF than neurons in the 
DON of the hindbrain, but both were well-suited to detect 
the seasonal range of fundamental frequencies present in 
the natural ‘boatwhistle’ sounds produced during the 
breeding period (Fay and Edds-Walton 2000). In addition, 
while there was no difference in threshold between mid-

brain and hindbrain neurons to tone stimuli in the dam-

selfish, midbrain neurons were more sensitive to complex 
conspecific sounds, which highlights the relevance and 
importance of testing complex natural sounds in neuro-
physiological studies of fish hearing. 

Frequency information in fishes is preserved by 
phase-locking (i.e., synchronization of neural spikes to the 
stimulus cycle) (see Feng and Schellart 1999). Strong phase-
locking to the stimulus is common in peripheral auditory 
fibers in fishes (Fay 1978a; Moeng and Popper 1984; 
Sisneros and Bass 2003), but often reduced at hindbrain, 
midbrain, and forebrain processing centers (Page 1970; Lu
and Fay 1993, 1995; Bodnar and Bass 1997, Edds-Walton 
and Fay 2003). In the goldfish, about 50% of medullary 
units are phase-locked (Page 1970), while the trout shows 
about 95% (Wubbels et al. 1993), and most DON cells in 
the toadfish showed good phase-locking (Edds-Walton and 
Fay 2008). Similarly, all of the auditory neurons recorded 
in the Hawaiian sergeant fish medulla were phase-locked to 
tone stimuli from 80 to 800 Hz. Phase-locking is ubiqui-
tous in low-frequency afferents ([4 kHz) across all 

may be related to several factors such as species variations 
in peripheral auditory structures, convergence ratios, or 
differences in temperature, electrode bias, or recording site 
between studies. High spontaneous activity (up to 
200 spikes s -1) found in peripheral afferent neurons across 
a broad range of taxa may improve linear response to 
sinusoidal stimuli, while reduced resting activity in higher 
centers may improve feature processing for presence or 
absence of a stimulus (Feng and Schellart 1999). 

Response to tone bursts: frequency response, 
phase-locking, threshold, and level encoding 

Auditory neurons in the hindbrain and midbrain TS of 
the Hawaiian sergeant fish were most sensitive to low 
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Fig. 10 Response of a a
representative medullary neuron 
to playbacks of natural 
conspecific sounds. a Response 
to the courtship-female visit 
sound. b Response to the 
courtship A pulses sound. Top 
trace in each panel shows the 
stimulus waveform, middle 
trace shows the neural response, 
and bottom trace shows the 
peri-stimulus time histogram of 
the response to 10 stimulus 
repetitions. Inset in a at top 
shows an expanded view of the 
neural response to a single A 
pulse followed by a B pulse of 
the courtship stimulus 
waveform (region outlined in 
rectangle). Mean resting 
discharge of this unit was 
2.9 spikes s- 1 
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vertebrate auditory systems, enhances pitch perception to 
improve signal-to-noise ratio, and may be an ancestral 
characteristic of the neural code for hearing (Popper and 
Fay 1999). 

Silent units showed the highest degree of phase-locking 
in the sergeant fish midbrain and hindbrain which is similar 
to that seen for directionally sensitive units in other fishes 
(Wubbels and Schellart 1997; Feng and Schellart 1999). 
The relatively high proportion of phase-locked units in the 
midbrain of the Hawaiian sergeant fish differs from other 
studies that show TS units with little to no phase-locking 
ability (Page 1970; Edds-Walton and Fay 2003). Lu and 
Fay (1993) showed that more than 50% of goldfish TS 
neurons were synchronized, and 15% of these were 

strongly phase-locked. However, they also note that all of 
these strong phase-locked units were recorded with glass 
electrodes but could not be isolated with low-impedance 
indium electrodes. Strong phase-locked units (*10% of 
units) were also recorded in the midbrain of mormyrids 
(Crawford 1993). Recordings from the TS of the toadfish 
showed only a subset of phase-locked neurons, which were 
suggested to be components of the directional auditory 
circuit, while units that did not phase-lock were less 
directionally sensitive (Edds-Walton and Fay 2003). Simi-

larly, a greater proportion (75%) of direction-sensitive 
units in the TS of the trout showed synchronization com-

pared to a smaller proportion (23%) of non-directionally 
sensitive neurons (Wubbels and Schellart 1997). Thus, 
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strong phase-locked units exist in the auditory midbrain of 
fishes and their frequency of occurrence may in part 
depend on position within the TS, directional selectivity, or 
may be species specific. Alternatively, differences among 
studies may reflect methodological variations such as 
electrode type or criteria used to define phase-locking. The 
high percentage of phase-locked neurons in the damselfish 
brain may also indicate greater frequency selectivity, 
although it is possible that some of the midbrain units 
recorded in our study were ascending medullary axons as 
suggested by Schellart et al. (1987). 

Mean thresholds of single auditory neurons to tone burst 
stimuli were *105 dBrms re: 1 lPa at the BF of 100 Hz. 
However, thresholds of individual auditory neurons varied 
widely with some neurons 10–30 dB more sensitive than 
others at a given frequency. Further, some neurons only 
responded to low frequencies (80–300 Hz), but were 
insensitive to higher frequencies even at high stimulus 
intensities (140–150 dB). These differences in sensitivity 
may be due in part to differential inputs from the three 
otolithic endorgans with hair-cell orientations that deviate 
from the main vertical dorso-ventral axis of particle 
velocity stimulation used in this study. 

Rate-intensity and synchronization-intensity curves for 
individual auditory units at 100 Hz in the Hawaiian ser-
geant fish varied in both slope and dynamic range. In many 
TS units, synchronization saturated at relatively low-
intensity levels, while spike rates continued to increase 
with increasing sound levels. In these neurons, spike rate 
would better encode sound level compared to synchroni-
zation. In contrast, many neurons in the hindbrain showed 
that synchronization was more important in level encoding 
compared to spike rates. These data indicate there are 
subpopulations of neurons in both the midbrain and hind-
brain that can provide information about stimulus level via 
different physiological mechanisms, but the mechanism 
may be frequency- and sound-intensity dependent. Similar 
variations in response-level curves among individual neu-
rons are seen in the auditory system of the goldfish, mid-

shipman, and toadfish (Fay 1978b; Fay 1985; McKibben 
and Bass 1999; Edds-Walton and Fay 2008). Sound level 
encoding is likely important for distance detection in the 
Hawaiian sergeant and other fishes, but further studies are 
needed to test this hypothesis. 

Response to complex conspecific sounds 

To our knowledge, this is the first study to use playbacks of 
natural complex conspecific sounds as stimuli to examine 
single neuron auditory encoding in the fish brain. A pre-
vious study used auditory evoked potential (AEP) record-
ings to show that temporal patterns, amplitude fluctuations, 
and frequency information of natural acoustic stimuli are 

represented in the slow wave responses of the fish auditory 
system (Wysocki and Ladich 2003). Our study demon-

strates that this same type of information is distinguishable 
at the level of single neurons in the auditory hindbrain and 
midbrain. Use of natural sound stimuli to study fish hearing 
ability is important because the frequency bandwidth may 
be a more important indication of frequency tuning in 
fishes and other vertebrates (Fay 1992). Further, damselfish 
sounds are pulsed, and the temporal pattern of pulse 
delivery is important for communication, including species 
and individual identity in both damselfishes and other 
species such as sunfishes and cod (Gerald 1971; Hawkins 
and Rasmussen 1978; Myrberg et al. 1978; Spanier 1979; 
Zelick et al. 1999). Auditory neurons in the TS of the 
mormyrid fish Pollimyrus adspersus are selectively acti-
vated by temporal features of complex sounds such as 
inter-click intervals (Crawford 1997), neurons in the 
toadfish TS show interpulse interval selectivity (Fay and 
Edds-Walton 2002), and the midbrain neurons of the 
midshipman provide a combinatorial code of both the 
difference in frequency from overlapping calls of neigh-
boring males and the spectral composition of individual 
calls (Bodnar and Bass 2001). Studies on sound production 
and hearing ability across vertebrate and invertebrate taxa 
stress the importance of temporal patterns in acoustic 
communication (Myrberg et al. 1978), and the auditory 
midbrain is well-suited to encode the temporal structure of 
natural vocalizations across vertebrates (Bass et al. 2005; 
Rees and Langner 2005). The representation of temporal 
patterns of conspecific sounds in the Hawaiian sergeant 
brain indicates it provides important information for inte-
gration with other sensory inputs and motor outputs to 
coordinate appropriate behavioral responses. However, due 
to the complicated nature of particle motion and pressure 
levels of complex sounds in small tanks, neural recordings 
in a free-field environment are needed to validate the 
responses reported here. 

The Hawaiian sergeant fish produces several different 
types of pulsed sounds during territorial and reproductive 
behaviors, and the greatest energy for all sound types is in 
the range of \80–400 Hz (Maruska et al. 2007). This low-
frequency spectral content is consistent with the best fre-
quency sensitivity of neurons in the auditory hindbrain and 
midbrain. For example, the courtship-female visit sound is 
composed of two different pulse types, A and B. The A 
pulse is short and relatively broadband, while the B pulse is 
longer and generally has a pulse repetition rate of 
*125 Hz with multiple harmonic-like intervals up to 
*1 kHz (Maruska et al. 2007). This ‘grunt-like’ sound is 
produced only when a male leads a female back to his nest 
and the pair is in close proximity to each other. The 
average BF of single auditory neurons was 127 Hz in the 
TS and 134 Hz in the hindbrain, which corresponds to 
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the pulse repetition rate range (120–130 Hz) of the B pulse 
of the courtship-female visit sound. The most common BFs 
of midbrain neurons also correspond to the pulse repetition 
rate of natural sounds in toadfish (Bass et al. 2001; Edds-
Walton and Fay 2003), midshipman (Bodnar and Bass 
1997), and mormyrids (Crawford 1993). Midbrain auditory 
neurons also showed a greater sensitivity to both courtship-
related sound types compared to hindbrain neurons, which 
can also translate into enhanced detection distance. Thus, 
the auditory midbrain is well-adapted to encode these 
particular types of natural sounds, which may be significant 
for integration with other cues detected by the visual and 
lateral line systems during reproductive behaviors. Future 
studies are needed to determine the behavioral importance 
of the different spectral and temporal sound characteristics 
in the Hawaiian sergeant fish. 
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