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1  |  INTRODUC TION

As essential components of communities and contributors to eco-
system functions, plants and other primary producers represent key 
conduits that link substrates to higher trophic levels in food webs 
and biogeochemical cycles (Austin & Zanne,  2015; Farago,  1994; 
Kaspari & Powers, 2016; Sterner & Elser, 2002; Wang et al., 2007; 
Waring et al., 2015; Welti et al., 2017). Plants make soil-borne el-
ements available to herbivores and other consumers, often while 

altering their relative proportions, that is, the ecological stoichiom-
etry of those elements (Hunter, 2016; Sterner & Elser, 2002). Thus, 
the formation and maintenance of the phytochemical landscape, as 
envisioned by Hunter  (2016), strongly influences plant-herbivore 
interactions, community assembly, and ecosystem dynamics across 
landscapes that differ in climatic conditions, soil composition, and 
other properties (e.g, Filipiak & Weiner, 2017; Mitchell et al., 2020; 
Moore et al.,  2010; Stallard & Edmond,  1981; Zhang et al.,  2012). 
Yet, our understanding of the formation, composition, and function 
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Abstract
Understanding the phytochemical landscapes of essential and nonessential chemical 
elements to plants provides an opportunity to better link biogeochemical cycles to 
trophic ecology. We investigated the formation and regulation of the cationic phyto-
chemical landscapes of four key elements for biota: Ca, Mg, K, and Na. We collected 
aboveground tissues of plants in Atriplex, Helianthus, and Opuntia and adjacent soils 
from 51, 131, and 83 sites, respectively, across the southern United States. We de-
termined the spatial variability of these cations in plants and soils. Also, we quantified 
the homeostasis coefficient for each cation and genus combination, by using mixed-
effect models, with spatially correlated random effects. Additionally, using random 
forest models, we modeled the influence of bioclimatic, soil, and spatial variables on 
plant cationic concentrations. Sodium variability and spatial autocorrelation were 
considerably greater than for Ca, Mg, or K. Calcium, Mg, and K exhibited strongly ho-
meostatic patterns, in striking contrast to non-homeostatic Na. Even so, climatic and 
soil variables explained a large proportion of plants' cationic concentrations. Essential 
elements (Ca, Mg, and K) appeared to be homeostatically regulated, which contrasted 
sharply with Na, a nonessential element for most plants. In addition, we provide evi-
dence for the No-Escape-from-Sodium hypothesis in real-world ecosystems, indicat-
ing that plant Na concentrations tend to increase as substrate Na levels increase.
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of phytochemical landscapes of many biotically important elements 
remains relatively understudied, especially for elements like sodium 
(Na) and other influential cations (Hunter,  2016; Kaspari,  2021; 
Kaspari & Powers, 2016).

As an often biologically critical element, Na is distinctive. It is 
generally considered nonessential for most plants, yet it is a key and 
essential nutrient for animals and decomposers (Clay et al.,  2014; 
Kaspari, 2020; Kaspari, 2021; Kronzucker et al., 2013). The distribu-
tion of Na across terrestrial habitats is exceptionally heterogeneous. 
Dry or xeric habitats, certain geological formations (e.g., salt depos-
its, salt domes, sodium feldspar rocks), and coastal habitats often 
have the highest concentrations of environmentally available Na 
ions (Kapustina, 2001; Kaspari, 2020; Martin et al., 2010; National 
Atmospheric Deposition Program [NRSP-3],  2020; Smith,  2013; 
Stallard & Edmond, 1981). High variation and shortfalls in environ-
mental Na have important consequences for organismal behavior, 
physiological performance, species interactions, and community as-
sembly (e.g., Borer et al., 2019; Bradshaw & Bradshaw, 1999; Bravo 
et al., 2012; Brewer & Grace, 1990; Clay et al., 2014; Clay et al., 2022; 
Prather et al., 2018; Snell-Rood et al., 2014). Therefore, determining 
the extent to which plant Na concentrations are coupled with those 
of soils is essential for deepening our understanding of how commu-
nity- and ecosystem-level processes vary across space.

Sodium is considered nonessential for the development of most 
plants (Grigore et al.,  2012; Kronzucker et al.,  2013). Notable ex-
ceptions in which Na benefits development or performance include 
most halophytes (Cheeseman, 2015; Flowers & Colmer, 2008; Kanai 
& Sakai,  2021) in certain environmental conditions, including spe-
cific ranges of Na concentration in the substrate (Santiago-Rosario 
et al.,  2021). Certain C4 (photosynthesis via C4 carbon fixation or 
the Hatch-Slack pathway) and crassulacean acid metabolism (CAM) 
plants benefit - at specific substrate concentrations - from slight in-
creases in substrate Na (Furumoto et al., 2011; Subbarao et al., 2003). 
Some C4 plant species in the families Amaranthaceae, Asteraceae, 
Brassicaceae, Cyperaceae, Fabaceae, Poaceae, Portulacaceae, and 
Solanaceae, among others, found at relatively low concentrations 
of substrate Na, benefit from slight increases in Na by increasing 
biomass yield and reducing chlorosis (Brownell & Crossland, 1972; 
Johnston et al.,  1988; Pessarakli & Marcum,  2000). For example, 
for species in the genus Flaveria (Asteraceae), Na is an essential nu-
trient as a transporter required for C4 photosynthesis (Furumoto 
et al.,  2011). Additionally, Na increased growth in the CAM spe-
cies Bryophyllum delagoense (Crassulaceae) when substrate Na was 
increased to 0.1  meq/L NaCl as compared to individuals in basal 
culture solution (0.07 μeq/L NaCl), especially when grown under 
conditions of short-day length and high diurnal temperature varia-
tion (Brownell & Crossland, 1974). Therefore, at certain low concen-
trations of substrate Na, slight increases in Na appear to positively 
influence some C4 and CAM plants' growth (Subbarao et al., 1999; 
Subbarao et al., 2003). However, it is important to note that whether 
Na′s effect on these species results from drought adaptations or 
metabolic micronutrient functions remains unresolved among plant 
physiologists (Brownell, 1968; Subbarao et al., 2003).

The No-Escape-from-Sodium hypothesis posits that plants' tis-
sues broadly increase in Na concentration as the concentration of 
Na in the substrate or solution increases, irrespective of their growth 
responses, and there is empirical support for this pattern across se-
lected plant taxa (Santiago-Rosario et al., 2021). However, our un-
derstanding of how plants respond to increasing substrate Na comes 
mostly from controlled laboratory and greenhouse experiments, 
which may or may not align with patterns in real-world ecosystems. 
In the current study, we tested the No-Escape-from-Sodium hypoth-
esis in the field across the southern continental United States. We 
also included three additional cations: calcium (Ca), magnesium (Mg), 
and potassium (K), because of the essential role they play in plant 
physiology and ecosystem processes and their ubiquitous distribu-
tion across the soilscape. We aimed to characterize the phytoca-
tionic landscapes for these four cations, by identifying the potential 
environmental drivers of plant cation concentrations and asking 
whether there is evidence for homeostatic regulation.

2  |  METHODS

2.1  |  Plant taxa, field collections, and elemental 
analysis

We selected the plant genera Atriplex (saltbushes), Helianthus (sun-
flowers), and Opuntia (prickly pears), based on their contrasting pho-
tosynthetic pathways and their widespread distributions across the 
conterminous United States. Atriplex comprises 65 North American 
species that use the C4 photosynthetic pathway (Brown,  1956; 
Kadereit et al., 2010). Helianthus species use the C3 photosynthetic 
pathway and include over 49 species across North America (Heiser 
et al., 1969; Timme et al., 2007; Vanaja et al., 2011). Finally, Opuntia 
comprises ~110 species in North America, with all species using the 
CAM photosynthetic pathway (Cui & Nobel, 1994; Majure et al., 2012).

We collected Atriplex, Helianthus, and Opuntia aboveground pho-
tosynthetic tissues in 51, 131, and 83 sites, respectively. Collection 
sites across the southern U.S. ranged from Florida (~86° W) to 
California (~123° W). Sampling was completed during the summers 
of 2018, 2019, and 2020 (Figure 1). We collected samples of abo-
veground tissues (leaves and stems), adjacent soil (top 10 cm), and 
one voucher specimen (for genus verification) from each site, along 
with GPS coordinates.

Plant and soil samples were oven-dried at 65°C for 7 days. 
Aboveground tissues (i.e., leaves for Atriplex and Helianthus, and 
cladodes for Opuntia) were processed and ground into a fine, ho-
mogeneous powder for each site. Dried soil samples were passed 
through a 2 mm copper sieve to remove rocks and organic debris. 
Concentrations of Ca, Mg, K, Na, and P on a dry mass basis for soils 
and plant tissues were determined at the Soil Testing and Plant 
Analysis Laboratory at Louisiana State University (http://www.lsuag​
center.com), using inductively coupled plasma with atomic emis-
sion spectrometry (ICP-AES) following standard protocols (Munns 
et al., 2010). Soil pH (1:1 water) was also measured.
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F I G U R E  1  Geographic locations and 
aboveground phytochemical landscapes 
of (a) Ca, (b) K, (c) Mg, and (d) Na (log10 
ppm) across the southern United States. 
Triangle, square, and circle shapes depict 
sites where Atriplex, Helianthus, and 
Opuntia were sampled, respectively. A 
color gradient demonstrates plant Ca, K, 
Mg, and Na concentrations, with darker 
shades indicating higher concentrations 
and lighter shades indicating lower 
concentrations.
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2.2  |  Abiotic conditions

Bioclimatic and elevation data were extracted for each sample 
site using the ‘raster’ package (Hijmans & van Etten, 2022) with a 
resolution of 4.6 km2 in R (R Core Team, 2020). Climatic variables 
were mean annual temperature (MAT, °C), mean diurnal tempera-
ture range, temperature seasonality, annual precipitation (mm), 
precipitation in the wettest month (mm), precipitation in the driest 
month (mm), and precipitation seasonality (coefficient of variation). 
We also measured the distance from each site to its nearest rel-
evant coast (km), as a proxy for its proximity to its effective marine 
source of cations (as in Bravo & Harms, 2017). We used the Gulf 
of Mexico-Pacific Continental Divide, as wind movement and pre-
cipitation for both sides of the divide are associated more closely 
with their respective oceanic sources (Adams & Comrie, 1997). For 
each sample location, we expanded a circle using the Google Earth 
(http://www.google.com/earth) circumference tool until the edge 
of the circle first contacted the relevant coast. The radius of the 
circle was recorded as the effective distance to the nearest marine 
source for cations.

2.3  |  Data analysis

2.3.1  |  Cation variability and spatial 
autocorrelation analysis

We performed a paired t-test to compare cation concentrations in 
aboveground plant tissues and adjacent soils and calculated the co-
efficient of variation to represent variation across space. To quantify 
whether inter-site proximity influenced cation concentration similar-
ities for each element for aboveground plant tissues in each genus, 
as well as adjacent soils, we performed a Mantel test using the pack-
age ‘ecodist’ (Goslee & Urban, 2007). All cation concentrations were 
log10 transformed and compared from site to site in a pairwise man-
ner. All values were compiled into a matrix of differences (i.e., values 
closer to zero indicate more significant similarity in cation composi-
tion), and the absolute value was calculated to remove all negative 
values from the matrix. Additionally, we calculated the Haversine 
distance (km) among sites using the package ‘geosphere’ (Hijmans 
et al., 2019).

We performed Mantel tests to assess whether: (1) plants nearby 
shared similar cation concentrations, and (2) soils nearby shared 
similar cation concentrations. For a Mantel test, a significant re-
sult reveals that distances between two matrices are correlated 
(Rossi, 1996). Correlations can be positive or negative, representing 
how the variables are associated. Correlation in the ‘ecodist’ package 
is calculated using a Spearman approach, and all Mantel test calcula-
tions were performed using 9999 permutations. We also conducted 
a Mantel correlogram using the R function ‘mgram’ of the package 
‘ecodist’ by dividing the data into 20 distance classes. For each of 
the three types of tests (1 and 2 above) a Mantel correlogram was 
performed for each cation and genus combination.

2.4  |  Abiotic drivers of plant cation concentrations

To quantify the relative potential importance of abiotic conditions in 
determining plant cation concentrations, we fitted spatial regression 
models for each combination of plant genus and cation (12 mod-
els = 3 plant genera x 4 plant cations) with the Random Forest algo-
rithm using the packages ‘spatialRF’ and ‘ranger’ (Benito, 2021; Wright 
& Ziegler, 2017). For each combination, we considered the following 
explanatory variables: MAT, temperature seasonality, mean annual 
precipitation, precipitation in the wettest months, precipitation in the 
driest months, precipitation seasonality, effective distance to coast, el-
evation, soil pH, and soil cation (i.e., the same as the plant cation). As 
multi-collinearity may affect the interpretation of variable importance 
of random forest models (Strobl et al., 2007), we estimated variance in-
flation (VIF) and correlation among abiotic variables and subsequently 
selected those whose VIF was lower than 4 and whose correlation with 
other abiotic variables was less than 0.7 (Dormann et al., 2013). We 
then tested the residuals of a non-spatial random forest model for spa-
tial autocorrelation using multiscale Moran's I, and, if spatial autocorre-
lation was statistically significant, fitted spatial Random Forest models 
with Moran's eigenvector maps to build spatial predictors using the R 
function ‘rf_spatial’. Because the default hyperparameters may not be 
adequate for each dataset, we used the R function ‘rf_tuning’ to select 
the optimal values for the number of regression trees in the forest, the 
number of variables to choose from on each tree split, and a minimum 
number of cases on a terminal node for each model. We repeated each 
model 50 times using the optimal hyperparameter values with the R 
function ‘rf_repeat’, because Random Forest is a stochastic algorithm 
whose variability may influence the interpretation of variable impor-
tance scores and response curves. We used median R-squared, cal-
culated as the squared correlation between observed and predicted 
values, and normalized root mean square errors (NRMSE) to assess 
model fit across the 50 iterations of each model. We log10 transformed 
plant and soil Na concentrations to normalize their distributions and 
only fitted a spatial random forest model for Opuntia and Na, since that 
was the only genus and cation combination for which it was required 
for our Random Forest analyses.

2.5  |  Assessment of homeostasis

To assess the potential for plants to regulate cations in the field, we 
calculated the homeostasis coefficient Η (eta) for each cation and 
genus combination, as outlined in Sterner and Elser (2002). For this 
approach, we calculated a stoichiometric ratio based on phosphorus 
(P) concentration for plants and soils. Then the homeostasis coef-
ficient (H) was calculated using the modified formula:

where y is the plant stoichiometric cationic ratio, x is the cationic soil 
ratio, and c is a constant. By plotting the logarithms of the plant versus 

log y = log c +

(

log x

H

)
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soil stoichiometry, Sterner and Elser  (2002) advise that slopes (1/H) 
between 1 and 0 indicate a continuum in homeostatic regulation with 
a slope value of 0 indicating strict homeostasis and a value of 1 indi-
cating a lack of homeostasis between plant stoichiometry relative to 
soil stoichiometry (Meunier et al., 2014). However, as cations may be 
spatially autocorrelated, we accounted for any spatial autocorrelation 
using the package ‘spaMM’ (Rouseet & Ferdy, 2014). As a statistical 
approach, ‘spaMM’ fits mixed-effect models and permits the inclusion 
of spatial autocorrelation (i.e., Matern) as a random effect. The mod-
els generated in this study considered plant cation (denominated as 
X) stoichiometry (Xplant:Pplant) and soil cation stoichiometry (Xsoil:Psoil) 
as fixed effects, and spatial autocorrelation was specified as a Matern 
random effect. For all models, we included spatial autocorrelation as a 
random effect, and fitted models using a nu of 0.5 to keep constancy 
across the cations and genera considered. All analyses were performed 
in R Studio (R Core Team, 2020).

3  |  RESULTS

3.1  |  Phytochemical landscapes differ across 
cations

Aboveground plant cation concentrations vary to differing degrees 
across the southern United States and among plant genera sam-
pled. Calcium (Figures  1a and 2a), Mg (Figures  1b and 2b), and K 
(Figures 1c and 2c) plant tissue concentrations displayed overall low 
inter-plant spatial variation. In contrast, Na exhibited considerably 
higher variation in plant tissue concentrations across all genera sam-
pled (Figures 1d and 2d).

Generally, aboveground plant tissues contained higher cat-
ion concentrations than adjacent soils (Figure 2, Table 1). The only 
exception was Na in Opuntia, in which there was no significant 
difference in aboveground tissue (1.729 log10[ppm] ± 0.08) and ad-
jacent soil (1.674 log10[ppm] ± 0.06) concentrations (t [82]  =  0.750, 
p = .453; Figure 2, Table 1). Additionally, Na was the most variable 
cation across sites in soils and plant tissue samples (Figure 2). For 
Na in Atriplex, soils were more variable than aboveground tissues, 
contrasting with the patterns observed in Helianthus and Opuntia 
(Figure 2d). Strikingly, variation in plant tissues of Ca, Mg, and K was 
minimal; more variation occurred in the soils found across the sam-
pled landscape for these cations (Figure 2).

3.2  |  Spatial autocorrelation is generally stronger 
for plant Na than the other cations across all genera

Aboveground plant Ca, Mg, and K exhibited generally low spatial 
autocorrelation across genera, especially focusing on positive spa-
tial autocorrelation at distances <1000 km (Figure  3). Atriplex had 
weak overall autocorrelation for plant Ca concentrations (r = 0.094, 
p = .043), and somewhat stronger autocorrelation for K concentra-
tions (r = 0.154, p = .004; Table 2). Helianthus also had weak overall 
autocorrelation in K concentrations (r = 0.054, p =  .050; Table 2). 

In contrast, there was strong significant overall autocorrelation for 
plant Na concentrations across all three genera (p < .0001; Table 2). 
On average, the correlograms for Na were decreasing, with positive 
significant spatial autocorrelation found for distances up to ~482 km 
for Atriplex, ~432 km for Helianthus, and ~ 162 km for Opuntia.

Soils, on average, exhibited varied spatial autocorrelation 
among the cations. For Atriplex sites, Mg (r = 0.201, p =  .001) and 
Na (r  =  0.119, p  =  .009) revealed stronger overall autocorrela-
tion (Table 2). For Helianthus sites, Ca (r = 0.052, p =  .026) and K 
(r  =  0.056, p  =  .022) displayed weak autocorrelation (Table  2). 
Opuntia sites exhibited no significant overall autocorrelation for any 
cations considered (Figure 4c, Table 2).

3.3  |  Homeostasis coefficients vary across 
cations and taxa

For Ca, H values differed across genera, with Helianthus expressing a 
much more homeostatic pattern (H = 31.54) as compared to Atriplex 
(H = 4.45); Opuntia expressed the lowest homeostatic pattern (H = 2.92; 
Table 3). For Mg, Helianthus had the highest H value (H = 15.35), fol-
lowed by Atriplex (H = 8.59) and Opuntia (H = 4.28; Table 3). The ho-
meostasis coefficient for K was more comparable among genera than 
for Ca and Mg; Helianthus (H = 5.54) had the highest H value, followed 
by Atriplex (H = 5.41) and Opuntia (H = 5.33; Table 3).

The homeostasis coefficient for Na followed a different pat-
tern than Ca, Mg, and K, with consistently low values for all genera. 
Opuntia had the marginally highest H value (H = 2.61), followed by 
Helianthus (H = 2.53) and Atriplex (H = 1.85; Table 3).

3.4  |  Soil cations and abiotic variables explain 
most of the variation in plant cation concentrations

Not all abiotic variables displayed the same influence on plant cation 
concentrations across the phytocationic landscapes (Figure  5). All 
models for Atriplex, Helianthus, and Opuntia shared MAT and soil cat-
ion concentration as the highest contributing variables influencing 
aboveground plant cation concentrations, albeit at different levels 
of importance (Figure 5, Table 4). Additionally, median R2 values for 
all models ranged from 0.57–0.94 (see Table  4), thus representing 
a high level of explained variation in plant cation concentrations. 
Mean annual temperature appeared to influence plant cation con-
centrations non-linearly across taxa and cations, with Opuntia show-
ing higher variation in responses as MAT increased. Sodium showed 
a unique response for Helianthus, where at around 18–19°C there is 
a sharp increase in plant Na concentrations, a pattern not observed 
in Atriplex and Opuntia (Figure 6). In terms of the influence of soil 
cation concentrations on plant cation concentrations, we found that 
in general plant cation concentrations increased non-linearly, reach-
ing a saturation point for all taxa and cations sampled, except in the 
case of K in Opuntia (Figure  7). We do not describe the response 
curves for other variables because they were not shared among all 
genera due to multicollinearity (Table 4).
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4  |  DISCUSSION

Plants across real-world ecosystems in the southern United States, 
on average, follow the No-Escape-from-Sodium hypothesis when 
exposed to variation in environmental Na across their ranges. This 
finding is congruent with patterns observed in laboratory stud-
ies (Santiago-Rosario et al., 2021). In contrast, the phytocationic 

landscapes of Ca, Mg, and K do not closely follow soil concen-
trations of these elements. Even though Ca, Mg, and K concen-
trations in plant tissues are about as equally predictable as Na 
concentrations in plant tissues from a suite of environmental vari-
ables, Ca, Mg, and K appear to be considerably more homeostati-
cally regulated than is Na in all three genera of plants considered 
in this study (Table 3).

F I G U R E  2  Concentrations and variation in concentrations of cations for aboveground plant tissues (purple) and adjacent soils (gold) for 
each genus across all sites sampled. Responses for (a) Ca, (b) Mg, (c) K, and (d) Na are shown in boxplots and the coefficients of variation are 
shown in bar graphs for each genus considered. All responses are log-transformed. Asterisks (***) indicate a significant difference (p < .0001).

TA B L E  1  Paired t-test results for plant and soil cation concentrations [log10 (ppm)] with a summary of means and standard errors for each 
genus

Atriplex Helianthus Opuntia

Cation Sample Mean SE t-stat p-value Mean SE t-stat p-value Mean SE t-stat p-value

Ca Plant 4.13 0.03 6.799 <.0001 4.47 0.01 20.898 <.0001 4.73 0.02 19.866 <.0001

Soil 3.83 0.05 3.60 0.04 3.77 0.05

Mg Plant 3.86 0.03 17.782 <.0001 3.69 0.01 43.486 <.0001 3.97 0.01 44.171 <.0001

Soil 2.64 0.06 2.37 0.03 2.41 0.04

K Plant 4.50 0.03 34.736 <.0001 4.49 0.01 55.313 <.0001 4.26 0.03 36.492 <.0001

Soil 2.87 0.05 2.36 0.04 2.50 0.04

Na Plant 3.13 0.16 7.363 <.0001 2.27 0.09 6.861 <.0001 1.73 0.08 0.750 .455

Soil 2.07 0.14 1.69 0.04 1.67 0.06

Note: Significant results are in bold.
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4.1  |  Plant cation concentrations depend on the 
environment

Sodium is an unusual biotically important cation for plants as there is 
no apparent metabolic or structural function known for most plants 
(Benito et al., 2014; Kronzucker et al., 2013; Pardo & Quintero, 2002). 
Even so, plants have multiple mechanisms to manage tissue Na′s pres-
ence, example, ionic vacuole accumulation (Apse et al., 1999; Apse & 
Blumwald, 2007), salt gland extrusion (Dassanayake & Larkin, 2017), 
among other high energy-consuming mechanisms (Kazachkova 
et al.,  2018; Pantha & Dassanayake,  2020). These mechanisms help 
to prevent overall tissue toxicity, thus promoting survival. In any case, 
plants generally cannot escape having to cope with Na, especially in en-
vironments where its availability is expected and persistent (Santiago-
Rosario et al., 2021), such as near coasts and in arid environments.

Plant Na in Atriplex and Helianthus appeared to follow similar ac-
cumulation patterns, with plants having higher amounts of Na than 

adjacent soils (Figure  3d). However, Opuntia aboveground tissues 
appeared to share similar amounts of Na with the soil, possibly indi-
cating an unusual strategy (Figure 3d). Moreover, the coefficient of 
variation in plant Na tissue concentration was approximately 40% 
for all genera, with Helianthus and Opuntia having higher variation 
in plant tissues than soil Na concentrations (Figure  3d). Variation 
in plant tissues of Atriplex was slightly lower than soil Na concen-
trations, which might reflect the halophytic nature of the family 
Amaranthaceae and the use of Na as a possible osmoticum in this 
genus (Glenn et al., 1994; White et al., 2017). Nevertheless, plant Na 
variation was substantially higher across all taxa than Ca, Mg, and 
K, suggesting less homeostasis for Na among plants in real-world 
settings.

Our results also indicate weak to no homeostasis of Na by 
plants in real-world ecosystems, which is consistent with the diver-
sity of ways plants cope with substrate Na. In most plants, phys-
iological mechanisms that mediate internal Na concentration rely 

F I G U R E  3  Mantel correlograms for plant cation spatial structure for Atriplex, Helianthus, and Opuntia. Mantel r values are plotted on 
the y-axis. Closed circles indicate significant correlations (p < .05) after 9999 permutations. Positive correlations indicate positive spatial 
autocorrelation among sites.

Aboveground plant cation 
similarity spatial structure

Soil cation similarity 
spatial structure

Cation Genus Mantel r p-value Mantel r p-value

Ca Atriplex 0.094 .043 0.077 .086

Helianthus 0.022 .222 0.052 .026

Opuntia −0.023 .654 0.051 .113

Mg Atriplex −0.013 .569 0.201 .001

Helianthus 0.044 .052 0.036 .095

Opuntia −0.028 .674 0.012 .384

K Atriplex 0.154 .004 0.065 .117

Helianthus 0.054 .050 0.056 .022

Opuntia 0.034 .254 0.068 .089

Na Atriplex 0.268 .0001 0.119 .009

Helianthus 0.223 .0001 −0.022 .816

Opuntia 0.282 .0001 0.041 .209

Note: Significant results are in bold.

TA B L E  2  Mantel test results summary 
for each genus and cation combination
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on complex pathways and energetically expensive mechanisms 
impacting growth, metabolism, and performance as substrate Na 
increases to toxic levels (Apse & Blumwald, 2007; Cheeseman & 
Wickens, 1986a; Cheeseman & Wickens, 1986b; Maathuis, 2014; 
Munns & Tester,  2008; Pantha & Dassanayake,  2020). Although 
the genera sampled for this study are widespread across the 
southern United States, they only represent a small sample of 
plant phylogenetic diversity, suggesting that an expansion of taxa 
collected with the aim of understanding ecological stoichiomet-
ric patterns would be useful. Additionally, to better understand 
the mechanisms giving rise to patterns observed in the field, cou-
pled laboratory and field experiments designed to manipulate 
substrate cations and gauge plant cation stoichiometric response 
across multiple plant taxa would be informative (Santiago-Rosario 
et al., 2021).

Concerning the phytochemical landscapes of cations, their forma-
tion and maintenance are highly dependent on environmental factors, 
such as cation concentrations in the soil, among other environmental 
conditions (Figure 5). Soil cationic concentrations and soil pH levels 
interactively influence cation acquisition by plants; in most cases 
we found these variables to have high importance across models. A 
surprising component that influenced the models in a varied but im-
portant way was MAT, with Opuntia showing the highest degree of 
responses, suggesting that the genus might be particularly sensitive 
to temperature for plant Mg and K concentrations (Figure 6). MAT has 
been shown to have a dominant influence on overall moisture avail-
ability in soils across space and geological time despite precipitation 
amounts (Chevalier & Chase, 2016). Aridity, and drought conditions, 
have a substantial correlation with increasing cation concentrations in 
soils, especially for Na (Mukhopadhyay et al., 2021).

F I G U R E  4  Mantel correlograms for soil cation spatial structure for Atriplex, Helianthus, and Opuntia. Mantel r values are plotted on 
the y-axis. Closed circles indicate significant correlations (p < .05) after 9999 permutations. Positive correlations indicate positive spatial 
autocorrelation among sites.

TA B L E  3  Homeostasis coefficient results (H) for all genera and cations sampled. Results are given as slopes and H along with their 
confidence intervals and t-values

Genus Cation Slope SEslope t-value
95% CIslope 
lower

95% CIslope 
upper H

95% CIH 
lower

95% CIH 
upper

Atriplex Ca 0.22 0.05 4.41 0.122 0.326 4.45 8.14 3.06

Mg 0.12 0.06 1.79 0.013 0.252 8.59 74.52 3.97

K 0.18 0.08 2.40 0.011 0.350 5.41 91.74 2.86

Na 0.54 0.09 5.47 0.289 0.755 1.85 3.46 1.32

Helianthus Ca 0.03 0.03 1.09 0.026 0.089 31.54 37.88 11.14

Mg 0.07 0.04 1.62 0.015 0.145 15.35 67.43 6.90

K 0.18 0.03 5.39 0.115 0.248 5.54 8.69 4.03

Na 0.40 0.08 4.68 0.228 0.564 2.53 4.39 1.77

Opuntia Ca 0.34 0.06 5.66 0.222 0.463 2.92 4.49 2.16

Mg 0.23 0.05 4.27 0.121 0.345 4.28 8.29 2.90

K 0.19 0.48 3.94 0.084 0.295 5.33 11.90 3.39

Na 0.38 0.09 4.16 0.191 0.581 2.61 5.25 1.72
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Considering plants' relationships with Na, the lack of homeosta-
sis and the amount by which abiotic variables explained plant tissue 
concentration variation in our study reflect the influence of the en-
vironment on plant Na concentrations across the landscape. Both 
the lack of homeostasis and environmental influences on plant Na 
accumulation can be used to predict the phytochemical landscape 
of Na at different geographical scales. This is especially import-
ant in light of ongoing coastal salt intrusion and natural deposition 
(Dasgupta et al.,  2015; National Atmospheric Deposition Program 
[NRSP-3], 2020; Rahman et al., 2018), soil salinization due to poor ir-
rigation practice, and drought (Ivushkin et al., 2019; Mukhopadhyay 
et al., 2021; Shahid et al., 2018), deicing road salt deposition across 
urban and rural areas (Bryson & Barker, 2002; Heintzman et al., 2015; 
Hintz et al., 2022; Mitchell et al., 2020; Snell-Rood et al., 2014), among 
other anthropogenic influences on plants in the future (Konkel, 2016).

4.2  |  The phytochemical landscapes of Ca, 
Mg, and K appear to be at least partially controlled by 
homeostasis

Homeostasis plays a prominent role in some phytocationic land-
scapes, and responses differ substantially among genera (Wang 
et al., 2019). Calcium, Mg, and K were found at higher concentra-
tions in plant tissues than in adjacent soils across all genera sampled. 
Plants apparently regulate these cations because of their essential 
biochemical and physiological functions (see Table 5). The variation 
of these cations in plant tissues differs substantially from Na; vari-
ation in Ca, Mg, and K is extremely low (coefficient of variation ap-
proximately 5% in all three genera; Figures 1 and 2). Although Ca, 
Mg, and K displayed higher homeostatic levels than Na, the concen-
trations varied among genera (Gilroy et al., 1993; Leigh, 2001; Tang 

F I G U R E  5  Importance values of potential abiotic drivers of plant concentrations of (a) Ca (b) K (c) Mg and (d) Na for Atriplex, Helianthus, 
and Opuntia. Abiotic drivers are ranked by relative variable importance calculated for each random forest model; variable importance 
represents the increase in mean error across trees when a predictor is permuted. Black points and error bars are mean and 95% confidence 
values of relative importance values and were calculated across 50 iterations of the same random forest model. For visualization purposes, 
the relative importance scores of spatial predictors were excluded.
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& Luan, 2017). In Helianthus, Ca and Mg displayed homeostasis (ac-
cording to Sterner and Elser's (2002) definition), and Mg and K ap-
peared to be kept at high levels of homeostasis in Atriplex (Table 3). 
For the genera mentioned above, soil Ca, Mg, and K concentrations 
do not substantially influence plant concentrations of the same 
ions other than being the sole or primary source of the element 
(Farago, 1994).

Homeostasis might explain why, on average, the importance of 
the climatic variables considered in this study differed considerably 
in explaining the variation in plant tissue Ca, Mg, and K across the 
geographic range sampled (Figure 6, Tables 3 and 4). The role that 
Ca, Mg, and K play in plants varies greatly, from a fundamental struc-
tural component to metabolism and enzymatic reactions (Table 5). 
Therefore, the performance of plant tissues is tightly linked to the 
acquisition and maintenance of these elements, among others 
(Alemán et al., 2009; Sardans & Peñuelas, 2021; Tang & Luan, 2017; 
White & Broadley, 2003; Xu et al., 2020).

Because of anthropogenic global warming and increases in at-
mospheric CO2 concentrations, plant quality and stoichiometric 
mechanisms might be highly impacted, especially in highly regulated 
elements such as Ca and Mg. Evidence suggests warming conditions 
and increasing CO2 concentrations will affect the environmental 
availability of some essential elements and their regulation by plants 
(i.e., N and P) unevenly across their ranges (Dijkstra et al., 2012; Gu 
et al., 2017). Moreover, the nutrition dilution hypothesis posits that 
increases in atmospheric CO2, water availability, and temperature 
promote increased carbohydrate production in primary producers 
resulting in increases in plant biomass accumulation with low foliar 
nutrient quality, which in turn promotes a decline in herbivore abun-
dance (Welti et al.,  2020). Whether these stoichiometric patterns 
hold across other micronutrients and nonessential elements across 
plant taxa and different habitats remains unquantified.

Among plants' essential elements, such as Ca, Mg, and K, 
host-specific herbivores should encounter a relatively consistent 

F I G U R E  6  Responses of plant concentrations of (a) Ca, (b) Mg, (c) K and (d) Na for Atriplex, Helianthus, and Opuntia to mean annual 
temperature (MAT). Each line represents a response curve estimated by a random forest model, which was fitted for each combination of 
plant genus and cation and repeated 50 times. Plant Na is on a log10 scale.
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concentration of these elements across their ranges, yet no such 
patterns were observed for Na. Na is an essential element for 
animal metabolism and development (National Research Council 
[U.S.].,  2005) and its highly variable distribution across the phy-
tocationic landscape might influence animal communities dispro-
portionately. For instance, low levels of plant Na concentrations 
promote salt-seeking behaviors in animals (i.e., collpas and salt lick 
visitation, increase in carnivory, among others) (Boggs & Dau, 2004; 
Bravo et al.,  2010; Burger & Gochfeld,  2003; Clay et al.,  2017; 
Holdø et al.,  2002), whereas high levels of plant Na concentra-
tions have generated unique herbivore adaptations to prevent 
salt-induced stress encountered in some halophytic plant taxa that 
accumulate Na in plant tissues to evade herbivory (Kenagy, 1973; 
Renault et al., 2016). Yet, the mechanisms by which Na variation 
influences animal behavior across natural settings remain incom-
pletely studied, especially when considering herbivorous species 
with large ranges.

4.3  |  Plants share similar Na concentrations the 
closer they are to each other

Sodium's high variability differs geographically, especially across soil 
Na gradients and proximity to coastlines with persistent salt depos-
its from marine aerosols (Borer et al., 2019; Bravo & Harms, 2017; 
Doughty et al., 2016). Not surprisingly, plant Na concentration ex-
hibited strong spatial autocorrelation across all genera sampled, 
emphasizing the weak homeostatic regulation plants have for this 
cation along with the environmental influence on plant Na acquisi-
tion (Figure 3, Table 2). Individuals closer to each other share simi-
lar levels of tissue Na across a heterogeneous landscape. Moreover, 
Ca, Mg, and K, patterns of spatial autocorrelation were complex, 
albeit mostly weak across genera (Table  2). Potassium showed 
modest spatial autocorrelation only in Atriplex (Table  2). A similar 
pattern was observed across several plant families sampled geo-
graphically broadly in China, where K and Na showed strong spatial 

F I G U R E  7  Responses of plant concentrations of (a) Ca, (b) Mg, (c) K and (d) Na for Atriplex, Helianthus, and Opuntia to soil cation 
concentrations (ppm). Each line represents a response curve estimated by a random forest model, which was fitted for each combination of 
plant genus and cation and repeated 50 times. Plant and soil Na are on a log10 scale.
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autocorrelation across leaf tissues, but Ca did not, thus suggesting 
that these general patterns might be shared globally across plant 
taxa (Zhang et al., 2012).

5  |  CONCLUSION

Our study illustrates the utility of focusing attention on the formation 
and maintenance of the phytochemical landscapes of essential (i.e., Ca, 
Mg, and K) and generally nonessential elements to plants, such as Na. 
The No-Escape-from-Sodium hypothesis was supported across field-
collected plants, which suggests that plant tissue concentrations tend 
to reflect Na in the substrate, similar to patterns observed in controlled 
settings (Santiago-Rosario et al., 2021). The differences in cation vari-
ation and spatial autocorrelation observed in this study appear to be 
linked to homeostatic regulation, or lack thereof, depending on ele-
mental essentiality to plants. Thus, identifying general phytochemical 
patterns of essential and nonessential elements to plants across the 

landscape represents a key step toward better understanding biogeo-
chemical cycles and their effects on trophic-level interactions and eco-
system dynamics (Hunter, 2016; Sterner & Elser, 2002). Expanding this 
type of research to other essential and nonessential elements, other 
taxa, and additional geographic locations would broaden our under-
standing of the evolutionary and biogeographic processes that give 
rise to phytocationic landscapes.
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TA B L E  5  Review of cation function in plants

Cation Function in plants

Calcium (Ca) •	 Cell wall stabilization
○	 Structural component of the cell wall middle lamella

•	 Cell extension and secretory processes
○	 Promotes cell elongation in roots, shoots, and pollen tubes
○	 Aids in exocytosis of cell wall materials or secretion of mucilage.

•	 Membrane stabilization
•	 Maintaining homeostasis

○	 Cation-anion balance
○	 Osmoregulation

•	 As a second messenger of environmental stress
○	 Variation in Ca concentration in the cytosol regulates cell division, cell elongation, among other cellular 

responses, in response to environmental influences and/or plant phenology

Magnesium (Mg) •	 Plays a major role in photosynthesis
○	 Central atom of the chlorophyll molecule

•	 Maintaining homeostasis
○	 Promoted enzymatic regulation
○	 Regulates cellular pH
○	 Regulates cation-anion balance

•	 Protein synthesis
○	 Aggregation of ribosomal subunits

Potassium (K) •	 Osmoregulation
○	 Maintains osmotic potential of cells and tissues
○	 Maintains turgor pressure
○	 Promoted stomatal movement by controlling guard cell osmotic pressure
○	 Influences photonastic and seismonastic movements

•	 Homeostasis maintenance
○	 Facilitates stabilization of cytosol pH aiding enzymatic activation and reaction
○	 Cation-anion balance
○	 Promotes phloem transport of sucrose and other carbohydrates

•	 Stimulates protein synthesis by aiding protein translation processes
○	 Promotes accumulation of soluble N compounds such as amino acids, amides, and nitrates

•	 Supports photosynthesis
○	 Promotes stomatal regulation
○	 Stimulates CO2 fixation
○	 Control respiration rates

Note: Summarized from White & Broadley, 2003, Broadley et al., 2012, Hermans et al., 2013, Benito et al., 2014, Dechen et al., 2015, Nieves-
Cordones et al., 2016, Tang & Luan, 2017, Pandey & Mahiwal, 2020, and Sardans & Peñuelas, 2021.
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