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ABSTRACT.  Spatial patterns of species’ distributions are often biased with respect to 
environmental variables, including discrete habitats. Patterns alone, however, cannot 
uniquely identify the combinations of processes that produced them. Many alternative 
processes could give rise to positive and negative habitat associations, including a popula-
tion’s history of dispersal limitation and niche-based interactions with the abiotic or biotic 
environment, possibly owing to habitat specialization. Because of the research infrastruc-
ture and detailed species’ distributional and dynamic data provided by the 50-ha Forest 
Dynamics Plot, Barro Colorado Island has been a hub and catalyst for research into pat-
terns of local-scale habitat associations and their underlying causes. Further research into 
the mechanisms that generate habitat-association patterns will continue to improve our 
understanding of tropical community assembly, the origins and maintenance of tropical 
diversity, and the likely future conditions of tropical plant assemblages.

Keywords: community assembly; distribution pattern; habitat association; habitat spe-
cialization; niche; pattern; process; spatial autocorrelation; spatial distribution; torus-
translation test

When we look at the plants and bushes clothing an entangled bank, we are tempted 
to attribute their proportional numbers and kinds to what we call chance. But how 
false a view is this! 

—Charles Darwin ([1859] 1985: 125)

A great deal of basic science is the description of patterns in the natural world and 
the pursuit of evidence for the underlying processes that cause, maintain, or modify them. 
One obvious and intriguing type of pattern is the heterogeneous distribution of individu-
als from a single population among habitats. 

At a given focal scale and moment in time, a plant species’ pattern of distribution is 
biased with respect to a defined habitat if more (or fewer) of its individuals occur in that 
habitat than expected from a specified null hypothesis. As an example, consider the small 
tree Annona glabra (Annonaceae), which is abundant along portions of the lakeshore 
of Barro Colorado Island (BCI), but not in the island’s interior (Croat, 1978; Einzmann 
and Zotz, 2024). Divide the 1,560-ha island into 1,000 contiguous, equal-area grid cells; 
dichotomize those grid cells into “shoreline” versus “island-interior” habitats; and A. 
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glabra’s distribution of stems would be highly nonrandomly 
positively associated with the shoreline habitat and negatively 
associated with the island-interior habitat. 

Many alternative processes or combinations of processes— 
operating on a variety of spatial and temporal scales (Levin, 
1992)— could have produced an observed pattern of habitat 
associations (Harms et al., 2001). For instance, a species’ real-
ized habitat associations do not necessarily reflect its funda-
mental niche, defined as the abiotic and biotic environmental 
characteristics that would allow a population to remain viable 
(Hutchinson, 1957). 

Annona glabra may be restricted to BCI’s shoreline by vir-
tue of ecophysiological (habitat) specialization—for example, 
individuals only survive and reproduce in shoreline-habitat con-
ditions. Yet alternative causes and histories of pattern assem-
bly are also possible. A species that was previously distributed 
throughout the island might later have suffered a population 
decline, possibly driven by a fatal, host-specific disease that 
emanated from a mid-island infection but that has not reached 
the shoreline individuals. A population that established from 
seeds that floated to BCI from a previously off-island species 
might be temporarily present only along the island’s margins. 
Although the latter two narratives are unlikely explanations for 
A. glabra’s distribution, they do exemplify alternative, testable, 
process-based explanations for a biased distribution pattern of 
habitat association. 

Based on their population-dynamic properties, McPeek 
(2017:10) described four means by which a species could cooc-
cur with heterospecifics in a given community (or habitat): 
“coexisting, neutral, sink, and walking dead” (to which we 
could add “transiently passing through,” especially for mobile 
taxa). To coexist with other species requires persistence, but the 
other possibilities do not assume this threshold level of habitat 
suitability. A useful complement to mechanisms for presence in 
a given habitat consists of the mechanisms for absence, such as 
dispersal limitation, establishment limitation, and their compo-
nents (Muller-Landau et al., 2002). The species clothing Dar-
win’s entangled-bank habitat are present, whereas other species 
are absent, because of the deterministic, niche-based, selective 
influences that Darwin probably primarily imagined, as well as 
various historical influences of chance and dispersal, as Hubbell 
(1979, 2001) and others have suggested (Connell, 1978; Vel-
lend, 2016). 

In this chapter, I review research on habitat associations of 
woody plants on BCI, and the mechanisms that underlie these 
associations. I begin with early research describing plant distri-
butions among habitats, followed by the development and appli-
cation of the torus-translation test for nonrandom associations 
with discrete habitat types. I then selectively summarize subse-
quent research on habitat associations involving additional types 
of tests, continuous environmental variables, and other research 
sites. Finally, I describe research on the processes underlying 
observed habitat associations. I close with a discussion of direc-
tions for future research.

EARLY RESEARCH ON HABITAT-ASSOCIATION 
PATTERNS OF TREES AND SHRUBS ON BCI

A great deal of botanical, ecological, and evolutionary inter-
est in BCI’s plants and vegetation patterns have blossomed since 
biologists first began visiting the island. Standley (1927) pub-
lished the first BCI flora; Kenoyer (1929) carried out the first 
phytosociological study of the island; and Enders (1935) pro-
duced BCI’s first vegetation map. Knight (1975) calculated the 
first ordination for some of BCI’s woody taxa and interpreted 
the phytosociological patterns with respect to habitats defined 
by forest age (young versus older), soil type (Frijoles clay versus 
gley), and underlying bedrock (four categories from Woodring, 
1958; Yavitt, 2024; Yavitt et al., 2024). 

The establishment of the BCI 50-ha Forest Dynamics Plot 
(FDP) in the 1980s created an unprecedented resource for docu-
menting and analyzing spatial distributions of individual plant 
species (Detto, 2024; Hubbell et al., 2024). The resulting data 
include the location (to 0.1 m) and species identity of every stem 
with a diameter at breast height (dbh) of 1 cm or larger in the 
entire 1,000 × 500 m area. During the nascent development of 
the FDP, Hubbell and Foster (1983:28) drew “qualitative con-
clusions” (i.e., without applying statistics) about edaphic and 
topographic habitat associations from the initial census of large 
stems (>20 cm dbh). Most species had patchy distribution pat-
terns, several of which appeared to be biased with respect to 
three “major habitats”: steep slopes, uplands of the plateau, 
and flats. Hubbell and Foster (1986b) followed up with chi-
squared tests of association for species with ≥10 stems ≥1 cm 
dbh distributed among slope, plateau, streamside/ravine, and 
swamp habitats. 

In their milestone perspective on the biological, historical, and 
random processes that pattern and maintain diversity in the forest 
on BCI, Hubbell and Foster (1986a) inferred habitat specialization 
from patterns of habitat association. They specifically mentioned 
guilds of “pioneers” and “edaphic and topographical specialists.” 
Other chapters in these BCI centennial volumes concern potential 
gap specialists or pioneers and their associations with canopy gaps 
(Brokaw, 2024; Dalling, 2024; Dent and Elsy, 2024). 

DEVELOPMENT AND APPLICATION  
OF THE TORUS-TRANSLATION TEST  

OF HABITAT ASSOCIATIONS

When I began my graduate research on BCI in the early 
1990s, all assessments of associations between plants and envi-
ronmental features that had been done for BCI were either non-
statistical descriptions or relied on statistical tests that assumed 
each stem could be treated as an independent entity (e.g., chi-
squared tests). These approaches are useful for some purposes—
for example, to describe where fruits are available to frugivores. 
The locations of different stems of the same species, however, 
are generally not independent. More generally, to understand 
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why plants are distributed the way they are, or to predict their 
occurrences (e.g., Caillaud et al., 2010), it is useful to recog-
nize that processes other than niche-based habitat sorting may 
contribute to an aggregated population pattern, to consider how 
multiple processes combine to assemble distribution patterns, 
and to employ tests that potentially partition the influences of 
those processes. 

Seed dispersal distributes plants’ seeds away from the 
mother plant (Augspurger, 2024; Beckman et al., 2024; Howe, 
2024), but dispersal in tropical woody species is generally lim-
ited, such that conspecific stems are aggregated, and density 
(number of individuals per unit area) is spatially autocorrelated 
(Condit et al., 1992, 2000; Hubbell et al., 1999; Muller-Landau 
et al., 2004, 2008). Habitat variables are also generally spatially 
autocorrelated (Bell et al., 1993). In habitat-association analy-
ses that aim to help us understand why plants are distributed 
as they are, we would like to know whether a statistical cross-
correlation or association between the two spatially autocor-
related patterns (the spatial patterns of density and habitats) 
results from habitat-specific effects on species performance, or 
for other, potentially spurious, reasons. Yet cross-correlation of 
two spatially autocorrelated patterns elevates the type 1 error 
rate; in other words, false significant associations are likely to 
appear (Clifford et al., 1989). 

To factor the spatial aggregation of stems into habitat-
association assessments, I developed the torus-translation test 
(Harms, 1997). While on BCI, I often worked in the evenings 
in the Center for Tropical Forest Science (CTFS) office on the 
third floor of Yellow House (a building long since demolished). 
One evening, I was thinking about habitat associations and bet-
ter ways to test for them, while looking at printed maps of spe-
cies’ distributions on the FDP. As I held a printed map in my 
hands, I noticed that by rolling the paper map into a tube and 
thereby bringing the northern edge of the map to abut the south-
ern edge, I could continuously translate the intact habitats of the 
plot north or south within plot boundaries that remained fixed in 
space. I could also bend the tube-map into a donut shape, thereby 
uniting the eastern and western boundaries, which allowed me 
to translate the intact habitats east or west. Without knowing it 
at the time, I had discovered for myself the torus and realized 
it would be a useful device for generating expected patterns for 
habitat-association analyses. My torus-translation test evaluates 
whether the spatial pattern of a species’ population is distributed 
with respect to habitats as expected by chance, and not whether 
the individuals are distributed entirely at random among habi-
tats. This is a bit like matching a paw to a track in the mud on a 
BCI trail to identify the track’s maker—when the shapes match, 
a causal relationship is more likely. 

We divided the BCI FDP into seven discrete habitat types, 
defined by a combination of topography, hydrology, and for-
est age (Harms et al., 2001; Fig. 1). We translated the habi-
tat map many times about a torus, while keeping the tree map 
fixed in space. Decoupling the habitat map from the tree map 
allowed us to generate many values for our metrics of habitat 

association (density or relative density per habitat) under the 
null hypothesis of random associations between the two. We 
then compared observed values of the metrics with the fre-
quency distributions from the torus randomizations to test 
whether observed values were extreme relative to expectations. 
Out of 171 species, each with ≥65 stems ≥1 cm dbh in the 1990 
census, 64% had one or more significant habitat associations 
(Harms et al., 2001; Fig. 2). 

One means by which to judge whether 64% surpasses 
random expectations employs false habitat maps. I inverted, 
reversed, and inverted-plus-reversed the BCI FDP habitat map to 
generate the three false maps that nevertheless perfectly maintain 
habitat shapes, sizes, and contiguities (Fig. 1). I overlaid the true 
tree map on each of these false habitat maps, and reran the entire 
set of torus-translation tests for species’ habitat-associations to 
generate an expected overall level of habitat association between 
the observed trees and the false habitat maps. For the 171 spe-
cies, the three false maps resulted in 73 (41%, inverted map), 53 
(30%, reversed map), and 72 (41%, inverted-plus-reversed map) 
species with significant habitat associations. The false-map aver-
age was 37%— more than 40% fewer than for the true habitat 
map (64%). Chance alone cannot account for patterns of habitat 
association on the BCI FDP. 

FURTHER RESEARCH DOCUMENTING HABITAT-
ASSOCIATION PATTERNS ON BCI AND BEYOND

Subsequent research has expanded on the initial torus-trans-
lation analyses of trees on the BCI 50-ha FDP in multiple ways, 
involving application to more plots, incorporation of continu-
ous environmental data, and development of additional testing 
methods. 

Two additional types of false-map habitat-association tests 
generate their null hypotheses by simulating many iterations of 
either false population maps or false habitat maps without torus 
translations. Plotkin et al. (2000, 2002) developed Poisson clus-
ter modeling methods to simulate false populations with true 
populations’ patterns of contagion. Zuleta et al. (2020) used an 
iterative amplitude-adjusted Fourier transform method to gener-
ate false habitat maps that nevertheless preserved key aspects of 
habitat spatial structure. Harms et al. (2001) also developed a 
randomized-habitat-generation technique. 

Other habitat-association tests take spatial aggregation into 
account through autologistic regression that incorporates an 
autocorrelation term into the statistical model (He et al., 2003), 
or wavelet analyses to disentangle spatial structure at different 
scales (e.g., potentially interpreted as small-scale seed-dispersal 
limitation versus larger-scale niche-based sorting; Clark et al., 
2018). Three especially good book-length resources for further 
details and methods to statistically test habitat association pat-
terns for plants treated as points on landscape maps are Illian 
et al. (2008), Legendre and Legendre (2012), and Wiegand and 
Moloney (2014).
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FIGURE 1. Habitats of the Barro Colorado Island (BCI) 50-ha Forest Dynamics Plot, as defined in Harms et al. (2001). Contour lines mark 5-m 
increments in elevation. The horizontal axis is easting (m); the vertical axis is northing (m). Red = High Plateau; orange = Slope; yellow = Low 
Plateau; green = Young Forest; blue = Stream; white = Swamp; brown = Mixed. (a) The true BCI seven-habitat map; (b) the false inverted map; 
(c) the false reversed map; and (d) the false inverted and reversed map.

Several assessments of patterns of habitat association, using 
the aforementioned techniques with discrete habitat catego-
ries, have since been done for other large-scale forest dynam-
ics datasets. This includes an analysis of lianas on BCI (Dalling 
et al., 2012) as well as multiple studies of trees in other plots 
in the Smithsonian ForestGEO network, formerly the Center 
for Tropical Forest Science (e.g., Valencia et al., 2004; Guna-
tilleke et al., 2006; Yamada et al., 2006; Chuyong et al., 2011). 
These additional assessments were, in many cases, facilitated 

by the availability of my torus-translation test in R packages, 
previously the CTFS R package (http://ctfs.si.edu/ctfsdev/CTF-
SRPackageNew/) and now as a function (tt_test) in the fgeo R 
package (https://forestgeo.si.edu/explore-data/r-package).

Research groups have sampled edaphic and hydrologic envi-
ronmental properties in FDPs, providing continuous variables 
for comparison with plant distributions. For example, John et 
al. (2007) sampled soils and used geostatistical kriging to map 
available elements and other edaphic properties (e.g., pH) of 

http://ctfs.si.edu/ctfsdev/CTFSRPackageNew/
http://ctfs.si.edu/ctfsdev/CTFSRPackageNew/
https://forestgeo.si.edu/explore-data/r-package
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FIGURE 2. Four selected species’ distributions with respect 
to habitats of the Barro Colorado Island (BCI) 50-ha Forest 
Dynamics Plot (as in Fig. 1). Habitat-association results are 
from Harms et al. (2001); accordingly, individual tree loca-
tions are from the 1990 BCI FDP census. Both axes indicate 
distance in meters. (a) Anaxagorea panamensis (Annonaceae) 
was positively associated with the Slope habitat according to 
the chi-squared test, but not according to the torus-transla-
tion test; all 589 stems occurred in the northwestern-most 
hectare (each individual stem is a black point on the map). 
(b) Although 21 stems of Elaeis oleifera (Arecaceae) were too 
few to conduct the tests using criteria in Harms et al. (2001), 
all individuals occurred within the Swamp or immediately 
adjacent Mixed habitat. (c) Gustavia superba (Lecythida-
ceae) was positively associated with the High Plateau and 
Stream habitats according to the chi-squared tests, but not 
according to the torus-translation test; and was positively 
associated with the Young Forest by both the chi-squared 
and the torus-translation tests—Young Forest results are 
from the same set of tests, but were not reported in Harms 
et al. (2001). (d) Ocotea whitei (Lauraceae) was positively 
associated with the Slope habitat by both the chi-squared 
and the torus-translation tests.

the BCI, La Planada (Colombia), and Yasuni (Ecuador) 
FDPs. Baldeck et al. (2013b) extended those analyses to 
community-level patterns, in which we found tree-assem-
blage species-compositional structure significantly related 
to soil properties. 

In addition to assessments of static patterns of habi-
tat associations, research groups have noted significant 
changes in FDP habitat associations through ontogeny 
(e.g., Comita et al., 2007; Kanagaraj et al., 2011; Baldeck 
et al., 2013a). From habitat-specific temporal floristic 
changes, Legendre and Condit (2019) suggested that the 
BCI FDP swamp is drying and being invaded by species 
previously excluded by seasonal inundation. A variety 
of larger-scale patterns of habitat association also occur 
among several BCI taxa throughout the entire island (Gar-
zon-Lopez et al., 2014) and across the Isthmus of Panama 
(Condit et al., 2013; Condit, 2024).

The take-home message from all of these assessments 
of habitat association is that an intermediate, but larger 
than expected, fraction of species have distributional 
biases (habitat associations). The consistency emerges 
even though results of these types of analyses depend to 
some degree on details of the statistical tests (e.g., Harms 
et al., 2001), user-defined habitat definitions (e.g., Itoh 
et al., 2010; Zuleta et al., 2020), placement of an FDP 
with respect to landscape-level heterogeneity, and other 
factors.
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PROCESSES BEHIND THE PATTERNS: POTENTIAL 
CAUSES OF HABITAT ASSOCIATIONS ON BCI

Insofar as species exhibit nonrandom habitat associations, 
the obvious next question is: which mechanisms underlie these 
associations? To the extent that species’ distributions are biased 
because of environmentally determined variation in postdisper-
sal performance, which physiological trade-offs and environ-
mental axes (e.g., water, nutrients) underlie these performance 
differences? Plant ecophysiology and other endeavors that relate 
environmental influences to plant traits, physiological or demo-
graphic performance, and various trade-offs have grown into an 
enormous enterprise on BCI. Here, I briefly discuss a few key 
studies specifically related to woody plant habitat-association 
patterns. Other chapters in these BCI centennial volumes provide 
additional examples: for rooting depth, see Andrade and Jackson 
(2024); for deciduousness, see Bohlman (2024); for drought resis-
tance, see Engelbrecht (2024); for wood traits, see Hietz (2024); 
for leaf traits, see Santiago (2024); for lianas, see Schnitzer and 
Carson (2024); and for plant hydraulics, see Wolfe (2024). 

Hydrologic-niche differences and variation in water avail-
ability appear to shape several relatively common species’ dis-
tributional patterns on BCI. For 48 native Panamanian tree 
and shrub species, Engelbrecht et al. (2007) found consistent 
relationships between experimentally determined estimates of 
drought sensitivity and habitat association patterns both within 
the BCI FDP (in which slopes tend to have moister soils) and 
across the Isthmus of Panama rainfall/seasonality gradient. At 
both spatial scales, species with lower drought sensitivity were 
associated with drier habitats, and species with higher drought 
sensitivity were associated with wetter habitats. Kupers et al. 
(2019c) generated a detailed hydrologic map for BCI’s FDP and 
found that naturally regenerating seedlings’ drought sensitivities 
were related to species’ hydrologic habitat-association patterns 
(Kupers et al., 2019a, 2019b). Similarly, among selected ever-
green tree species on the BCI FDP and across the Isthmus of 
Panama, plants with lower wilting points were associated with 
drier habitats (Kunert et al., 2021). Lopez and Kursar (1999) 
subjected four common BCI trees to experimental flooding and 
concluded that positive associations with flood-prone habitats 
(e.g., the BCI FDP swamp) in seasonal forests were associated 
with tolerance to flooding followed by drought. 

Edaphic-niche differences and variation in soil conditions 
also appear to shape species’ distributional patterns on BCI. 
For 15 pioneer species, seedling growth responses to phospho-
rus treatments matched expectations based on large-tree distri-
butions with respect to soil-phosphorus across the Isthmus of 
Panama (Zalamea et al., 2016). Silvera et al. (2003) hypothe-
sized that the two cooccurring morphotypes of Trema micrantha 
(Cannabaceae) partition the soil-nutrient differences between the 
poorer soils of landslides (exposed mineral soils) and the richer 
soils of island-interior gaps (Pizano, 2024).

Patterns of phylogenetic or trait dispersion among habitats 
are often interpreted in terms of habitat filtering and competitive 

displacement among taxa (Webb et al., 2002; Cavender-Bares et 
al., 2004). Several research groups have uncovered significant 
nonrandom patterns of phylogenetic structure among the FDPs’ 
discrete habitats and continuous-variable environmental condi-
tions (Kembel and Hubbell, 2006; Schreeg et al., 2010; Baldeck 
et al., 2013c, 2016; Pearse et al., 2013). Just as they do for a 
plant’s interactions with the abiotic environment, traits mediate 
a plant’s interactions with other organisms (competitors, herbi-
vores, mutualists; e.g., Pizano et al., 2011; Kembel et al., 2014; 
Coley, 2024a, 2024b). These biotic interactions can also shape 
habitat-specific plant performance and the emergent patterns of 
species’ habitat associations (e.g., Fine et al., 2004, 2006; Endara 
et al., 2022). 

Using a combination of traits and relative abundance 
changes among habitats through time, Rubio and Swenson 
(2022) suggested that species within the BCI FDP cluster into 
functional-group categories, within which ecological drift may 
be more influential than among those groups. This forest-
dynamics narrative echoes Hubbell and Foster (1986a). It is also 
consistent with an island-wide assessment of the relative roles 
played by deterministic and neutral processes (Svenning et al., 
2004, 2006), from which evidence supported important roles 
for both niche-based determinism and chance. Even so, a degree 
of nonrandom within-habitat partitioning is suggested by some 
negative relationships between trait similarity and spatial asso-
ciations between pairs of taxa at small, 5-m neighborhood scales 
within the BCI FDP (Velázquez et al., 2015). 

Just as a population’s distributional biases among habitats 
could result from environmental influences on postdispersal per-
formance, seed dispersal could also give rise to habitat associa-
tions. Through seed-addition experiments on BCI, Svenning and 
Wright (2005) found widespread, consequential seed-dispersal 
limitation among BCI’s woody plant taxa, so the potential exists 
for differential dispersal to cause abundance differences among 
habitats that run counter to patterns that would otherwise occur 
under unlimited dispersal. Habitat selection and habitat-related 
movement patterns of animal seed-dispersers could bias seed 
deposition (e.g., Schupp et al., 2002; Russo and Augspurger, 
2004; Hirsch et al., 2012). In addition, the third trophic level 
could have an indirect influence on habitat-related seed disper-
sal. For example, if the landscape of fear generated by ocelot 
predators (Gálvez and Hernández, 2022) varies among habitats, 
habitat-specific variation in secondary seed dispersal or preda-
tion by agoutis could occur. 

FUTURE DIRECTIONS

Many open questions remain concerning the causes and con-
sequences of habitat associations in tropical forests. (1) To what 
extent do nonrandom patterns of habitat association result from 
species’ niche requirements as expressed through phenotypic 
traits? For the majority of tropical plant species (especially rare 
taxa) on BCI and throughout the tropics, we remain ignorant 
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of the underlying causes of their patterns of distribution, their 
niche differences and similarities, and how their traits mediate 
the interplay between environment and demographic perfor-
mance. (2) How important is habitat specialization to patterns 
of relative abundance? Futuyma and Moreno (1988) convinc-
ingly argued that specialization should be gauged comparatively, 
and Hubbell (2001: 10) claimed that “no other general attri-
bute of ecological communities besides species richness has com-
manded more theoretical and empirical attention than relative 
species abundance,” yet we have almost no idea whether any 
particular species has the relative abundance value that it does 
(at any spatial scale) for niche-based (e.g., habitat specializa-
tion), mostly chance-based, or other nonniche historical reasons.  
(3) How important are niche differences (e.g., habitat special-
ization) for the origins and maintenance of BCI’s and the entire 
planet’s species diversity? We speculate repeatedly that they mat-
ter (e.g., Chesson, 2000; Wright, 2002), but we do not know 
with quantitative objectivity how important they are relative to 
other drivers (e.g., Janzen–Connell effects; Milici and Comita, 
2024). (4) How will species’ distributions, relative abundances, 
and persistence respond to anthropogenic global change (e.g., 
climate, nutrient deposition, land use)? Better understanding of 
the mechanisms that underpin current patterns of species’ distri-
butions would help predict the nature of changes to come. 
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