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Abstract: Polypeptoids, a class of synthetic peptidomimetic polymers, have attracted increasing
attention due to their potential for biotechnological applications, such as drug/gene delivery, sensing
and molecular recognition. Recent investigations on the solution self-assembly of amphiphilic
block copolypeptoids highlighted their capability to form a variety of nanostructures with tailorable
morphologies and functionalities. Here, we review our recent findings on the solutions self-assembly
of coil-crystalline diblock copolypeptoids bearing alkyl side chains. We highlight the solution self-
assembly pathways of these polypeptoid block copolymers and show how molecular packing and
crystallization of these building blocks affect the self-assembly behavior, resulting in one-dimensional
(1D), two-dimensional (2D) and multidimensional hierarchical polymeric nanostructures in solution.

Keywords: polypeptoids; diblock copolymers; crystallization; solution self-assembly

1. Introduction

Self-assembly of amphiphilic block copolymers (BCPs) in solution is one of the most
fascinating phenomena in polymer physics due to the unique properties and numerous
potential applications of the resulting nanostructures. The creation of various well-defined
polymeric nanostructures with tailorable size and functionalities via solution self-assembly
is not only useful in drug delivery, catalysis, optoelectronics and structured nanomaterials,
but also provided unique perspective to understand the structural complexity and assembly
rules of biomacromolecules observed in biological systems. To minimize the total free
energy of the system, polymeric amphiphiles tend to self-assemble into well-defined
morphologies in a selective solvent whenever the polymer concentration is above the
critical micelle concentration (CMC). For coil–coil diblock copolymers in selective solvent,
the most common self-assembled morphologies include spherical micelles, wormlike
micelles and vesicles with a core-shell type of architecture. The thermodynamic equilibrium
morphology of these self-assembled structures is described by the so-called dimensionless
packing parameter, p, which is defined by p = v/a0lc, where v and lc are the volume and
the length of the solvophobic block, respectively, and a0 is the optimal surface area of
the solvophilic block at the core-corona interface [1]. In many cases, the thermodynamic
equilibrium with lowest free energy is not readily achieved, as the molecular exchange
amongst polymeric aggregates is sluggish relative to their self-assembly process [2]. This in
turn opens up opportunities to utilize different self-assembly pathways to attain uncommon
solution morphologies that are kinetically trapped.

The early scaling work done by Vilgis and Halperin [3] suggested that by introducing
a crystallizable block, which adds an extra driving force into the system, the self-assembly
behavior of amphiphilic BCPs in solution can be significantly altered. The crystalline core
confined within polymeric micelles may provide novel control options when used as seeds
for further crystallization. During the past two decades, solution self-assembly of BCPs
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with a crystallizable block has been used as an effective method for the generation of
various non-spherical polymeric micelles or nanostructures, including one-dimensional
(1D) nanofibers or nanorods [4–6], two-dimensional (2D) nanosheets or platelets [7–9] or
even more sophisticated hierarchical nanostructures under specific conditions [10]. This
is also known as the so-called crystallization-driven self-assembly (CDSA) process where
the aggregate morphology and self-assembly pathways are dominated by the epitaxial
crystalline growth of macromolecular building blocks in solution. More importantly, upon
crystallization, the molecular exchange is often restricted due to high free energy penalty,
resulting in kinetically trapped molecular assemblies in an out-of-equilibrium state with
a very long lifetime [2,11–15]. As a result, one can access novel polymeric nanostruc-
tures with varying morphology by controlling the self-assembly pathways during sample
preparation. It has been shown that CDSA pathways and final solution morphologies of
BCPs can be influenced by many factors, such as chemical composition, block ratios, poly-
mer concentration, polymer–solvent interactions, molecular packing of the crystallizable
block, annealing condition and other external stimuli [8,16–21]. In some cases, the solution
self-assembly of crystallizable BCPs can proceed in a living fashion by gradually adding
molecularly dissolved unimers to the pre-existing “seed” crystals, enabling the access to
near monodisperse anisotropic nanostructures or hierarchical assemblies with varying
levels of structural complexity in solution [5,10,19,22–29].

Non-spherical nanomaterials formed by the solution self-assembly of biocompat-
ible macromolecules exhibit unique properties that are desirable in many biomedical
and biotechnological applications, such as drug/gene delivery [30,31] and biomineral-
ization [32]. For example, relative to spherical nanoparticles, elongated filomicelles or
nano-disks can either lead to longer blood circulation time [30] or promote cell exterior
binding with reduced cell uptake [33]. To date, chemists have used many crystalline poly-
mers as the primary core-forming building blocks to facilitate the CDSA of amphiphilic
BCPs in solution, including flexible linear polymers (e.g., polyethylene [15,16], poly(ε-
caprolactone) [9,17,34], poly(L-lactide)) [8,21,23] and polymers with either relatively rigid
backbones or bulky side groups that exhibit either crystalline or liquid crystalline (LC)-
like behaviors (e.g., poly(2-(perfluorooctyl)ethyl methacrylate [35,36], poly(γ-benzyl-L-
glutamate) [37], polyferrocenylsilanes [6,10,38,39] and polythiophenes [26,28]). However,
considering the potential use of polymeric self-assemblies in biomedical and biotech-
nological applications, there is also a need of polymers that have desirable bioactivity,
cytocompatibility, biodegradability and enzymatically stability.

As a class of bioinspired synthetic polymers, polypeptoids featuring N-substituted
polyglycine backbones are structural mimics of polypeptides [40–45]. Due to the absence
of hydrogen bonding and stereogenic centers along the backbone (Figure 1), polypeptoids
exhibit good thermal processability and solubility in various organic solvents, as well
as enhanced protease stability, in sharp contrast to polypeptides. These features make
polypeptoid a potential candidate for a wide variety of biomedical and biotechnologi-
cal applications, such as antifouling coatings [46–51], drug/gene delivery [52–55] and
biosensing [56–58]. Recent developments in the controlled polymerization and solid-phase
synthesis have enabled access to a variety of polypeptoids with tailorable chain length,
N-substituent structures, sequence, and architecture [59–68]. In the past several years, solu-
tion self-assembly of block copolypeptoids have especially attracted increasing attention
due their capability to form various self-assembled nanostructures with tailorable structure,
morphology, and functionality [60,67–85]. Given their molecular tunability, polypeptoid-
based BCPs are considered as a promising biomimetic platform for macromolecular and
supramolecular engineering for biomedical and biotechnological applications.
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Figure 1. Structures of polypeptoids bearing various alkyl side chains that have been reported.

This review highlights our recent experimental findings on solution self-assembly of
coil-crystalline diblock copolypeptoids bearing alkyl side chains. In the next section, we
briefly discuss the synthesis and crystallization behavior of polypeptoids bearing alkyl side
chains. In Section 3, we focus on the CDSA of coil-crystalline diblock copolypeptoids in
solution. The effects of molecular packing, block composition and side chain architecture
on CDSA, as well as the self-assembly pathways are presented. Perspectives on the
solution self-assembly of coil-crystalline diblock copolypeptoids bearing alkyl side chains
are followed by a brief conclusion.

2. Polypeptoids Bearing Alkyl Side Chains: Synthetic Methods and Their
Phase Behavior
2.1. Controlled Ring-Opening Polymerization (ROP) for Polypeptoids

Polypeptoid-based polymers are commonly synthesized via two methods: (1) Submonomer
solid-phase synthesis, and (2) ring-opening polymerization (ROP) of N-substituted glycine de-
rived N-carboxyanhydride (R-NCA) or N-thiocarboxyanhydride (R-NTA) monomers using
nucleophilic initiators (e.g., primary amine). The former method involves the growth of
polypeptoid chain from the C-terminus to the N-terminus by alternating attachment of
bromoacetic acid and various primary amines on a NH2-bearing solid support [42,86].
The stepwise synthetic method allows the access to monodispersed polypeptoids with
diverse structures and precise control of chain length and sequences, which is advanta-
geous for applications where sequence-defined copolypeptoids with complex side chain
functionalities are required [40,68,69,72,73,87–92]. However, long chain polypeptoids with
degree of polymerization (DPn) greater than 50 are difficult to obtain by the sub-monomer
method. By contrast, high molecular weight polypeptoids can be synthesized by con-
trolled ROP of R-NCA or R-NTA monomers using nucleophilic initiators such as primary
amines [41,62,66,93]. A wide variety of R-NCA or R-NTA monomers have been reported
for primary amine-initiated ROP of polypeptoids bearing various N-substituents in a one-
pot fashion [44,62,65,66,93–96]. As this review is focused on the solution self-assembly of
diblock copolypeptoids bearing alkyl side chains with relatively high molecular weight, we
will mainly discuss the polymer synthesis using the controlled ROP method. The readers
are referred to the previous reviews [41–45] for a more comprehensive view regarding the
synthesis of peptoids and polypeptoids.

As shown in Scheme 1, diblock copolypeptoids can be synthesized by controlled
ROP of R-NCA monomers in a sequential manner using nucleophilic initiators such as
primary amines. This feature has been attributed to the controlled/living nature of ROP of
R-NCAs [59,61,62]. By reaching a complete conversion of the first R-NCA, the second R-
NCA can be directly added to the reaction mixture as long as the product maintains a good
solubility, where the entire polymerization reaction can be easily monitored by infrared
(IR) spectroscopy. The actual molecular weight and block ratio of the final product can be
determined by end-group analysis using 1H NMR spectroscopy in conjunction with matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS),
size-exclusion chromatography (SEC) or viscosity measurements. As R-NCAs are very sen-
sitive to moisture, the use of anhydrous solvents is necessary, and the reactions are normally
conducted under anhydrous condition with water content less than 30 ppm to avoid side re-
actions. Luxenhofer et al. have shown that the benzyl amine-initiated ROP of R-NCA, such
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as N-methyl N-carboxyanhydride (Me-NCA) and N-butyl N-carboxyanhydride (Bu-NCA)
proceeded in a controlled manner without chain transfer or termination events, yielding
well-defined homopolypeptoids with controlled molecular weights and narrow molecu-
lar weight distributions (PDI < 1.1–1.3) [61,62]. In addition, they also have shown that
well-defined block copolypeptoids, e.g., poly(N-methyl glycine)-b-poly(N-butyl glycine)
(PNMG-b-PNBG), can be produced by controlled ROP with sequential monomer addi-
tion [61,62]. In our previous studies [60,70,79,84], a variety of well-defined amphiphilic
diblock copolypeptoids that comprised of at least one crystallizable block with relatively
low PDIs have been synthesized via benzyl amine-initiated ROPs of R-NCAs in a sequential
manner, allowing us to further investigate their CDSA behaviors in solution. There are
several aliphatic N-substituents can be readily used for the molecular design (Figure 1). For
coil-crystalline diblock copolypeptoids, Me-NCA is the most commonly used monomer to
produce the amorphous PNMG block, whereas R-NCAs bearing long n-alkyl groups (e.g.,
N-octyl N-carboxyanhydride (Oct-NCA) and N-decyl N-carboxyanhydride (De-NCA))
are often used to produce the crystallizable block. Branching of the alkyl side chains can
also be introduced to tune the inter- and intramolecular interactions of polypeptoid, thus
allowing their molecular packing and phase behavior to be systematically tailored.
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sequential manner.

While primary amine-initiated ROP of R-NCAs yields linear diblock copolypep-
toids, recent synthetic developments in the organo-mediated zwitterionic ring-opening
polymerization (ZROP) of R-NCAs have also enabled access to polypeptoids with cyclic
topology [59]. In previous studies, N-heterocyclic carbenes (NHCs) have been used as
initiators/organo-catalysts to initiate/mediate ZROP of R-NCAs (e.g., Me-NCA, Bu-NCA
Oct-NCA and De-NCA) for a variety of well-defined cyclic polypepotids with tunable
molecular weight and narrow dispersity [59,63,93,97]; 1,8-Diazabicycloundec-7-ene (DBU),
a bicyclic amidine that is less sensitive to air and moisture relative to NHC, has also been
demonstrated capable of mediating ZROPs of R-NCAs in a similar manner [98,99]. It has
been demonstrated that the ZROP proceeded through a zwitterionic propagating intermedi-
ate where the two oppositely charged chain ends are held in proximity through electrostatic
interaction. Low dielectric solvents, such as tetrahydrofuran (THF) and toluene, were nor-
mally used to avoid intramolecular transamidation relative to chain propagation and
ensure a controlled ZROP reaction [44]. The quasi-living nature of the organo-mediated
ZROP also enable the access to well-defined amphiphilic cyclic diblock copolypeptoids by
sequential monomer addition (Scheme 1b), which allow us to exploit the effect of chain
topology on solution self-assembly [60].



Polymers 2021, 13, 3131 5 of 23

2.2. Molecular Packing and Phase Behavior of Polypeptoid Homopolymers Bearing Alkyl
Side Chains

As aforementioned, the self-assembly pathway and final aggregate morphology of
amphiphilic coil-crystalline diblock copolymers in solution depends strongly on the molec-
ular packing and phase behavior of the crystallizable block. Thus, it is important to first
gain a thorough understanding on the general packing motifs and crystallization behavior
of the corresponding homopolymers. As one would expect, molecular packing, crystal-
lization behaviors, thermal transitions and solubility of polypeptoids highly rely on their
N-substituent structures. Here, we briefly summarize the molecular packing and phase
behavior of homopolypeptoids bearing alkyl side chains.

Polypeptoids bearing linear aliphatic N-substituents shorter than 2 carbons are amor-
phous and behave as random coil-like polymers. The most famous example is poly
(N-methyl glycine) (PNMG), a.k.a. polysarcosine, the simplest member of the polypeptoid
family, which is amorphous and can be readily dissolved in water or alcohol [100–102].
As a promising biodegradable poly (ethylene glycol) (PEG)-alternative, PNMG can be
served as hydrophilic component by providing steric stabilization of nanostructures, plas-
monic particles or proteins for various biomedical applications, such as drug delivery and
theranostics [54,102–107]. On the other hand, it has been found that polypeptoids with
relatively long linear n-alkyl side chains (4 ≤ S ≤ 14, where S is the number of carbon
atoms in the n-alkyl group) are highly crystalline in the solid state [89,97,108]. Using X-ray
diffraction and molecular dynamics simulations, Balsara, Zuckermann and coworkers
have revealed their general packing motif: Polypeptoid molecules bearing n-alkyl side
chains tend to adopt a board-like structure in the crystalline state, where the backbone is
fully extended in an all-cis backbone conformation and is approximately coplanar with
the n-alkyl side chains (Figure 2) [108]. The all cis-amide backbone conformation, which
is more compact and possesses a higher degree of ordering than the all-trans backbone
conformation, allows for more favorable intra- and inter-molecular interactions upon crys-
tallization/supramolecular assembly. With N backbone repeating units and S number of
carbons on the n-alkyl side chains, the unit cell dimensions, namely a, b and c, follow a universal
relationship, in which a = 0.455 nm, b = (0.298N + 0.035) nm and c = (0.186S + 0.55) nm. Note that
crystallization of these board-like polypeptoids can occur at relatively low number-average
degree of polymerization (e.g., DPn = 9) in both solid and solution states [72,108].
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ence [108] with permission from the American Chemical Society.

By using differential scanning calorimetry (DSC), Luxenhofer showed that the glass
transition temperature (Tg) of polypeptoids with 1 ≤ S ≤ 5 decreases with increasing
n-alkyl side chain length [109], which is likely due to the plasticization effect induced
by the flexible n-alkyl side chains [110]. The increase of n-alkyl side chain length also
leads to an increasing tendency towards crystallization. Lee et al. found that both linear
and cyclic polypeptoids bearing long linear n-alkyl side chains (4 ≤ S ≤ 14) exhibit two
phase transitions upon temperature increase (Figure 3a) [97]. These two transition tem-
peratures are strongly coupled and highly depend on the number of carbon atoms in the
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n-alkyl group. Using temperature-dependent X-ray scattering, Balsara, Zuckermann and
coworkers further evidenced the broadening of the (100) peak and the disappearance of
higher order peaks of diblock polypeptoid bearing n-decyl side chains during the lower-
temperature transition, indicating the diminished ordering for the face-to-face stacking of
the board-like polypeptoid molecules (Figure 3b) [111]. Thus, it has been suggested that
the lower-temperature transition corresponds to a crystalline phase to a “sanidic” liquid
crystalline (LC) mesophase transition, while the higher-temperature transition corresponds
to the LC mesophase to isotropic melt transition (Figure 3b) [111]. In our very recent study
on poly (N-decyl glycine) (PNDG) thin films prepared on solid substrates, we showed
that both linear and cyclic PNDG exhibit two amorphous halos when heating above the
isotropic melt transition temperature (Figure 3c) [112]. Interestingly, the d-spacings of these
two amorphous halos are in good agreement with the theoretical molecular dimension of
PNDG in an extended trans-amide backbone conformation. Therefore, it was proposed that
polypeptoid molecules undergo a cis-to-trans amide backbone conformational transition
when heating above the isotropic melting temperature, where the long n-alkyl side chains
are still nearly coplanar with the polypeptoid backbone [112].
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Figure 3. (a) DSC thermograms of linear polypeptoids bearing different n-alkyl side chains with
2 ≤ S ≤ 14 during the second heating cycle. (b) DSC and WAXS results of N-acetylated diblock
polypeptoid bearing n-decyl side chains, i.e., Ac-pNdc9-b-pNte9. Three different phases can be
identified, i.e., crystalline phase, sanidic LC mesophase and isotropic melt. (c) Two-dimensional
GIWAXD images of 48 nm thick linear PNDG (DPn = 52) thin film prepared on Si substrate measured
at T = 200 ◦C and T = 25 ◦C after cooling from 200 ◦C, respectively. The out-of-plane (qz) and
in-plane (qxy) directions are indicated by arrows. Figures reproduced from references [97,111,112]
with permission from the American Chemical Society.

Side chain engineering has long been served as an effective strategy to modulate inter
and intra-molecular interactions and packing of crystallizable polymers, thus allowing their
morphology, solubility, and functionality to be systematically tailored [113]. It has been
found that the molecular packing and crystallization behavior of polypeptoids are turned
into a different scenario when the alkyl side chains are asymmetrically branched. For exam-
ple, in the case of racemic 2-ethyl-l-hexyl side chains, it was found that relatively short poly
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(N-2-ethyl-1-hexyl glycine) (PNEHG) molecules with DPn ≤ 20 are amorphous with no
first-order transition observed by DSC [90,91]. On the other hand, longer PNEHG chains,
e.g., DPn ≥ 100, exhibit a single first-order thermal transition with a small enthalpic change,
but are still in sharp contrast with poly (N-octyl glycine) (PNOG) homopolymer which also
possesses eight carbon atoms on their side chains [84,97]. Our recent WAXD measurements
on PNOG and PNEHG homopolymers with similar DPn (DPn ≈ 100) revealed the effect of
side chain branching on the molecular geometry and supramolecular assembly [84]. As
shown in Figure 4b, PNOG103 homopolymer was found to exhibit typical reflection peaks
in the WAXD profile due to the side-by-side (along crystallographic c-axis) and face-to-face
stackings (along crystallographic a-axis) of the board-like molecules, consistent with those
observed for polypeptoids bearing linear n-alkyl side chains. By contrast, PNEHG100
exhibits a primary diffraction peak at q* = 0.50 Å−1 due to the distance (1.26 nm) between
adjacent PNEHG backbones that are separated by the interdigitated N-2-ethyl-1-hexyl
side chains, along with multiple weak higher order peaks located at

√
3q*,
√

4q*,
√

7q*,
respectively. A broad amorphous peak near q = 1.2 Å−1 is also discernible, which is likely
to arise from the interchain distance among the 2-ethyl-1-hexyl side chains. This result
indicates that the PNEHG molecules are rod-like and packed into a hexagonal mesophase
upon cooling from isotropic melt. Unlike PNOG chains that preferentially adopt a board-
like geometry with all n-octyl side chains aligned in the same plane, the greater steric
hindrance of the bulky racemic 2-ethyl-1-hexyl side chains makes it energetically unfavor-
able for the PNEHG to adopt a planar geometry. Instead, the PNEHG molecules adopt a
rod-like geometry with an extended backbone conformation, which allow the side chains
to orient outwardly along the backbone, thereby minimizing steric repulsion amongst
the bulky branched alkyl substituents. Therefore, asymmetric branching of the aliphatic
N-substituents (e.g., 2-ethyl-l-hexyl) not only suppresses the degree of crystallization, but
also changes the packing motif of polypeptoids. As we will show, such feature allows us to
modulate the solution self-assembly of amphiphilic diblock copolypeptoids by side chain
branching pattern.
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Figure 4. (a) DSC thermograms of PNOG (DPn = 103) and PNEHG (DPn = 100) homopolymers during the second heating
cycle. (b) One-dimensional WAXD profiles of the PNOG and PNEHG homopolymers measured at T = 45 ◦C. The primary
and secondary peaks associated to the Kapton windows on the sample cell are indicated by the red arrows. (c) Proposed
molecular geometries of PNOG and PNEHG at crystalline/liquid-crystalline state. Figure reproduced from reference [84]
with permission from the American Chemical Society.
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3. Solution Self-Assembly of Coil-Crystalline Diblock Copolypeptoids Bearing Alkyl
Side Chains
3.1. Sample Preparation and Characterization of Coil-Crystalline Diblock Copolypeptoid Solutions

For long chain macromolecules, crystallization is a kinetically controlled process,
implying that sample preparation and processing pathways have profound impacts on
the final structure and crystalline morphology. For solution self-assembly of BCPs that
comprised of a crystallizable block, size, shape and morphology of the final nanostructures
strongly rely on the self-assembly pathways, which can be affected by many prepara-
tion/processing factors, including initial polymer concentration, solvent quality, impurity
and thermal history. The interplay between aggregation and crystallization also plays a
key role in determining the final solution morphology. As crystallization is strongly tem-
perature and concentration dependent, it can be manipulated to control the self-assembly
pathway. The simplest way to trigger a CDSA process is by first dissolve the BCPs molecu-
larly in good or nonselective solvent, then changing the temperature or solvent quality to
induce crystallization.

It should be noted that the solubility of individual blocks of BCPs in a given solvent
is important when planning a CDSA experiment. For polypeptoids, the polymer–solvent
interaction may vary significantly depending on the number of carbon atoms in their
alkyl side groups (S). For example, while both PNMG (S = 1) and poly (N-ethyl glycine)
(S = 2) have good solubility in water [107], poly (N-propyl glycine) with S = 3 was found to
exhibit lower critical solution temperature (LCST) in water, which can phase separate when
heated above the cloud point temperature (i.e., 15–25 ◦C) [114]. As the S value further
increases, polypeptoid molecules become increasingly more hydrophobic and exhibited
diminished solubility in water. Similar trend of solubility versus side chain length was also
observed for polypeptoids in methanol, which showed that PNDG with S = 10 is more solvo-
phobic than PNMG at room temperature, as evidenced by liquid contact angle measure-
ments [79]. It was found that a wide range of polypeptoids bearing n-alkyl side chains with
1 ≤ S ≤ 12 can be readily solubilized in dichoromethane and chloroform [97]. Toluene
and DMF can also dissolve polypeptoids with relatively short n-alkyl side chains (e.g.,
S = 4) [59,63], whereas for crystallizable polypeptoids bearing longer n-alkyl side chains,
THF can provide good solubility at high temperatures (e.g., 50 ◦C or above) [97,112]. Note
that the polypeptoid solubility may also depends on molecular weight and preparation
history of the polymer samples [60,97,107].

Our previous studies mainly focused on the solution self-assembly of coil-crystalline
diblock copolypeptoids bearing alkyl side chains in methanol. Using scattering techniques,
we found that most coil-crystalline diblock copolypeptoids, e.g., PNMG-b-PNOG with
f PNOG ≤ 0.73 and PNMG-b-PNDG with f PNDG ≤ 0.44 (where f is the volume fraction
of the crystalline block), can be molecularly dissolved (i.e., forming unimers) at dilute
concentrations in methanol by heating at high temperatures [79,84]. Cooling the methanol
solution down to room temperature induces the recrystallization of PNOG or PNDG blocks.
Therefore, CDSA of diblock copolypeptoids can be triggered by first heating the solution
at high temperature, subsequently cooling to desired temperature and keep the solution
under isothermal condition for prolonged time. Note that multiple structural changes and
phase transitions can take place during these steps, thus, the solution samples must be
carefully characterized with good spatial and temporal resolutions.

Various in situ and ex situ techniques can be used to monitor the structural evolution of
coil-crystalline diblock copolypeptoids during the solution self-assembly, such as static light
scattering (SLS), small-/wide-angle X-ray scattering (SAXS/WAXS), small-angle neutron
scattering (SANS), (cryo-)transmission electron microscopy (TEM or cryo-TEM) and atomic
force microscopy (AFM). While TEM and AFM can “visually” characterize the polymeric
nanostructures self-assembled in real space, reciprocal scattering techniques using X-ray or
neutron sources are more powerful tools in terms of providing global averaged structural
information at length scales ranging from micrometers to angstroms [115]. In addition,
scattering techniques are generally non-destructive and can directly characterize the self-
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assembled structures in solution environments. Modern synchrotron X-ray sources with
high flux and small beam divergence, in conjunction with the use of hybrid pixel array
detectors that allow direct photon detection (e.g., PILATUS detectors by Dectris Ltd.),
also enable fast data collection (down to milliseconds per data) for dilute samples, which
makes SAXS/WAXS ideally suited for probing multiscale structural evolution of BCPs as
a function of time during solution self-assembly [116–119]. It should be mentioned that
polypeptoid self-assemblies induced by CDSA often possess multiple levels of structural
hierarchy and heterogeneity in solution (see examples below). Therefore, extreme care
should be taken when interpreting the scattering data, especially for those collected from
the small-angle regime. In this regard, SAXS and SANS are often complimentarily used in
conjunction with other microscopic techniques to provide a compelling characterization of
the solution CDSA process over a wide range of length- and time-scales.

3.2. Crystallization-Driven Self-Assembly of 1D nanofibrils

Long, wormlike 1D nanofibrils can be generated by the CDSA of coil-crystalline
diblock copolypeptoids with relatively low volume fraction of the crystalline block in
methanol. Lee et al. previously showed that PNMG112-b-PNDG16 comprised of a soluble
PNMG block and a much shorter crystallizable PNDG slowly self-assembled into long,
wormlike nanofibrils in dilute methanol with a polymer concentration of c = 1 mg/mL [60].
Cryo-TEM imaging revealed a morphological transition from spherical micelles to mi-
crometer length nanofibrils during the course of seven days after the solution was cooled
down to room temperature (Figure 5a–c). Similar self-assembly behavior was also found
for the cyclic counterpart, i.e., cyclic-PNMG105-b-PNDG10, except for its relatively slower
self-assembly kinetics. At higher concentrations (e.g., 10 wt%), these linear and cyclic
PNMG-b-PNDGs form free-standing gels after the solution was cooled, which is attributed
to the formation of gel network that comprised of entangled crystalline nanofibrils [70].

To better understand the crystalline packing of PNDG segment in the wormlike
micelles, X-ray scattering experiments of the worm-micelle solution was conducted under
unidirectional flow. Figure 5d–f shows the 2D SAXS, MAXS and WAXS data of the 5 mg/mL
methanol solution containing the PNMG105-b-PNDG20 long, wormlike 1D nanofibrils under
unidirectional flow in a capillary flow cell with a constant shear rate of ~25.6 s−1 near
the wall. Under the influence of the flow field, the wormlike micelles were preferentially
aligned parallelly with the flow direction, evidenced by the increasing anisotropy of the
2D SAXS patterns with increasing flow rate [79,120–122]. Meanwhile, M/WAXS analysis
(Figure 5g,h) has revealed a significantly more pronounced scattering peak due to the (001)
reflection in the q⊥ direction relative to that in the q// direction, indicating that the (001)
molecular packing separated by the n-decyl side chains (i.e., side-by-side stacking) with a
d-spacing of d001 = 2.4 nm was aligned in the direction perpendicular to the long axis of the
PNMG105-b-PNDG20 nanofibrils. Consistently, the scattering peaks due to (100) reflection
and the associated higher order reflections from (101) and (102) planes are more notable
along the q// direction as compared to those in the q⊥ direction. According to Figure 2, the
result indicates that the adjacent cis-amide backbones with a d-spacing of d100 = 0.46 nm
due to the face-to-face stacking was aligned in a direction parallel to the long axis of the
nanofibrils. These combined results support an anisotropic crystalline core structure for
the long, wormlike 1D nanofibrils, as depicted in the inset of Figure 5c.

Time/temperature-dependent synchrotron X-ray/neutron scattering experiments
were performed to further investigate the self-assembly pathway and formation mech-
anism of these 1D nanofibrils. High-temperature solution SAXS result shows that the
PNMG105-b-PNDG20 polymers are well-dissolved and exist as unimers in methanol at 65 ◦C
(Figure 6a,b), which gives a radius of gyration (Rg) of 2.3 nm by Guinier plot analysis. Upon
cooling the solution to room temperature, a drastic change of the scattering profile was
observed (Figure 5i). At time t = 0 min, i.e., immediately after the solution was cooled down
from 65◦C to room temperature, the SAXS profile shows a noticeable upturn at the low q
region, while the overall intensity is still relatively weak. Such intensity upturn with a q−2.5
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dependence is attributed to the formation of polymer aggregates, i.e., the “seeds”, at the
very early stage after the solution was cooled down to room temperature. With increasing
of time, (001), (100) and their higher order reflections started to appear after ~100 min
and intensify over time. Meanwhile, at the low q regime in SAXS spectra, the dependence
of intensity over q gradually changed over from I ~ q−2.5 to q−1.5, and eventually to q−1

after ~400 min, while the overall absolute SAXS intensity continue to increase until a final
state was reached. We attribute this increase in the SAXS intensity mainly due to the one-
dimensional elongation of the nanofibrils, consistent with the time-dependent cryo-TEM
results shown in Figure 5a–c. Note that the SAXS profile of the final PNMG105-b-PNDG20
nanofibrils at t = 15 days can be well-fitted by using the scattering model for core-corona
cylindrical micelles developed by Pedersen and co-workers [123,124], which gives a core
radius (Rc) of 3.3 ± 0.2 nm and a radius of gyration of the corona chains of 3.8 ± 0.2 nm.
The average diameter of the nanofibrils is then estimated to be approximately 23.4 nm, in
good agreement with the cryo-TEM result.
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Figure 5. (a–c) Representative cryo-TEM images of 1 mg/mL PNMG112-b-PNDG16 methanol solution at different waiting
time (t) after been cooled down to room temperature. The chemical structure of PNMG-b-PNDG block copolypeptoid
and the schematic illustration of molecular packings of the core-forming PNDG blocks within a nanofibril are shown
in the inset of (c), where the backbones and n-decyl side chains of PNDG are indicated in blue and red, respectively.
(d–f) Two-dimensional SAXS (d), MAXS (e) and WAXS (f) images for 5 mg/mL PNMG105-b-PNDG20 methanol solution
measured during unidirectional flow at room temperature. The directions parallel (q//) and perpendicular (q⊥) to the
flow direction are indicated by arrows. The corresponding one-dimensional profiles of the MAXS/WAXS results along
the q// and q⊥ directions are plotted in (g) and (h), respectively. (i) SAXS (top) and MAXS/WAXS (bottom) profiles of
5 mg/mL PNMG105-b-PNDG20 methanol solution measured at static state at different t. The solid line in the SAXS profile at
t = ~15 days corresponds to the best-fit to the data based on the cylindrical-shaped micelle model. (j) Schematic illustration
of the proposed self-assembly mechanisms for the 1D nanofibrils (e.g., PNMG105-b-PNDG20) via CDSA. Figures reproduced
from references [60,79] with permission from the American Chemical Society.

The above results clearly show that the elongation of PNMGm-b-PNDGn nanofibrils
with relatively low volume fraction of PNDG segments (i.e., m ≈ 100 and n ≈ 20) is
induced by the face-to-face stacking of PNDG backbones along the crystallographic a-axis
(i.e., the (100) packing), while the cross-sectional dimension (or lateral diameter) of the
nanofibrils is determined by the backbone length of PNDG and the (001) packing along
the crystallographic c-axis. Based on the time-dependent SAXS/WAXS and cryo-TEM
results, it is reasonable to conclude that the 1D nanofibrils formation is mainly governed
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by the so-called “self-seeding growth” mechanism [6,9,13,19,28,125,126], which involves
the initial formation of a few small “seed” crystals followed by the preferential addition of
the unimers to the crystalline front (Figure 5j). Apparently, for board-like PNDG molecules,
the creation of anisotropic crystalline core requires preferential addition of the unimers to a
certain crystallographic facet, instead of adding unimers equally in all directions. As we
found, the face-to-face stacking of the PNDG segment is more favored over the side-by-side
packing during the seeded growth process, resulting in the unidirectional elongation of
long wormlike micelles.

3.3. Effect of Block Composition on the Solution Self-Assemblies

For amphiphilic coil-crystalline BCPs, increasing the volume fraction or DPn of the
solvophobic crystalline block often leads to drastic changes in the self-assembly path-
way and final aggregate morphology in solution (Figure 6d,e) show the cryo-TEM im-
ages for the self-assembled PNMG121-b-PNDG46 (f PNDG = 0.61) and PNMG124-b-PNDG63
(f PNDG = 0.68) nanostructures in 5 mg/mL methanol solution. Unlike the long, worm-
like nanofibrils formed by CDSA of PNMG-b-PNDGs with relatively low PNDG volume
fractions (i.e., f PNDG = 0.44), the PNMG121-b-PNDG46 having an intermediate PNDG
volume fraction self-assembled into rigid rod-like structures with much shorter length
(~100–400 nm) under identical sample preparation condition. The best-fit to the SANS data
of PNMG121-b-PNDG46 nanorods (Figure 6f) using cylindrical-shaped polymer micelle
model gives a PNDG core radius of Rc = 6.8 ± 0.2 nm, which is two times larger than that
for PNMG105-b-PNDG20 nanofibrils. The discrete reflection peaks due to the face-to-face
and side-by-side packing of PNDG were also observed by WAXS, suggesting the occur-
rence of highly ordered crystalline structure of core-forming PNDG blocks. Assuming the
crystalline packing of the PNDG segments in the 1D nanorods are identical to that in the
1D nanofibrils, the cross section of the former core would have at least 4 PNDG molecules
stacked side-by-side in a fully extended cis-amide backbone conformation.

As the volume fraction of PNDG segments is further increased, cryo-TEM revealed
the predominant presence of 2D nanosheets in addition to some short nanorods for the
PNMG124-b-PNDG63 methanol solution. The majority of the nanosheets exhibit a rectan-
gular shape that is ~100 nm in width and several hundreds of nm in length. The average
thickness of the PNMG124-b-PNDG63 nanosheets was estimated to be ~14 nm based on
AFM analysis. WAXS analysis of the PNMG124-b-PNDG63 solution (Figure 6g) revealed
notable diffraction peaks due to side-by-side packing of PNDG. However, the (100) reflec-
tion and the associated higher order (101) and (102) reflections are barely discernible in
the WAXS region, indicating the relatively poor molecular ordering of adjacent PNDG
backbones along the crystallographic a-axis. This result suggests that the formation of
PNMG124-b-PNDG63 nanosheets is mainly driven by the side-by-side molecular packing
along the crystallographic c-axis, while the face-to-face molecular packing along the a-axis
is significantly diminished. We postulate that the length of the nanosheets is determined
the side-by-side packing of PNDG segments along the crystallographic c-axis, whereas the
width of the nanosheets is resulted from the face-to-face stacking of the PNDG segments.
This picture is consistent with recent cryo-electron microscopy and molecular dynamic
simulation studies on crystallizable diblock copolypeptoid nanosheets [127]. From WAXS
analysis, the distance of adjacent PNDG backbones separated by the long n-decyl side
chains was found to be slightly increased to 2.5 nm for the PNMG124-b-PNDG63 nanosheets
as compared to that of the PNMG-b-PNDG nanofibrils and nanorods. Meanwhile, the
(001) peak is slightly broader than those observed from PNMG105-b-PNDG20 nanofibrils
and PNMG121-b-PNDG46 nanorods (2.4 nm), implying the more disordered molecular
packing of PNDG backbones along the crystallographic c-axis in the PNMG124-b-PNDG63
nanosheets presumably due to the backbone folding.
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Figure 6. (a) SAXS profiles of the 5 mg/mL PNMG105-b-PNDG20 and PNMG121-b-PNDG46 methanol
solutions measured at 65 ◦C. The corresponding Guinier plot analysis of PNMG105-b-PNDG20

(Rg = 2.3 nm) and PNMG121-b-PNDG46 (Rg = 14.9 nm) based on the criteria of qRg < 1.3 were shown
in (b) and (c), respectively. Representative cryo-TEM images for the self-assembled (d) PNMG121-
b-PNDG46 and (e) PNMG124-b-PNDG63 nanostructures in methanol. (f) SANS intensity profile
(open circles) for the self-assembled PNMG121-b-PNDG46 and PNMG124-b-PNDG63 nanostructures
in deuterated methanol. The solid line in (f) corresponds to the best-fit to the data based on the
cylindrical-shaped micelle model. (g) WAXS intensity profiles for the 5 mg/mL PNMG121-b-PNDG46

and PNMG124-b-PNDG63 in methanol. (h) Schematic illustration of the proposed self-assembly
mechanisms for the 1D nanorods (e.g., PNMG121-b-PNDG46) via CDSA. Figure reproduced from
reference [79] with permission from the American Chemical Society.

The above results show that the solution self-assembly of coil-crystalline diblock
copolypeptoids highly relies on the volume fraction of the crystallizable PNDG segment
relative to that of the solvophilic PNMG segment. With increasing volume fraction of
the PNDG block, the final aggregate morphology gradually transits from long wormlike
nanofibrils, to short rigid nanorods and then to 2D nanosheets. Here, the self-assembly
pathway of PNMG-b-PNDG plays a key role in determining the final aggregate morphology.
SAXS (Figure 6a–c) and cryo-TEM analysis [79] revealed the formation of spherical micelles
of PNMG121-b-PNDG46 in methanol at 65 ◦C with a Rg of 14.9 nm and an aggregation
number of ~175. This is in sharp contrast to the PNMG105-b-PNDG20 methanol solution in
which all polymers exist as unimers (Rg = 2.3 nm) at 65 ◦C. Note that no crystallization of
PNDG block was observed at this temperature. We attributed the large difference in the
initial association state to the solubility difference of these polymers in methanol: With
longer PNDG segments, the stronger solvophobic interaction drives the micellation of
diblock copolypeptoids at high temperature (i.e., T > Tm), forming amorphous spherical
micelles. Using SAXS/WAXS, we also found that subsequent cooling the solution to
room temperature immediately induces the crystallization of PNDG segments within the
micellar core. As dissociation of micelles upon cooling to room temperature is highly
unlikely, the pre-formed spherical micelles of PNMG121-b-PNDG46 must undergo confined
crystallization of PNDG within the micellar core upon cooling [15,16]. If we consider the
length of the PNMG121-b-PNDG46 nanorods to be ~200 nm in average at the final state, as
evidenced by cryo-TEM (Figure 6d), the aggregation number of the PNMG121-b-PNDG46
nanorods is then estimated to be ~1834. This number is about 10 times larger than that of the
amorphous spherical micelle precursor (~175) at 65 ◦C prior to the onset of crystallization,
which clearly indicates that the crystallization-induced fusion and structural rearrangement
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of preformed spherical micelles must have occurred to yield the final nanorods. Therefore,
the self-assembly pathway for the PNMG121-b-PNDG46 nanorods, as depicted in Figure 6h,
is distinctly different from the aforementioned self-seeding growth of PNMG105-b-PNDG20
nanofibrils (Figure 5j).

We shall also mention that the scenario becomes more complicated for the PNMG124-
b-PNDG63 nanosheets and the detail formation mechanism of these nanosheets remains
somewhat ambiguous. Based on SAXS/WAXS and cryo-TEM results, PNMG124-b-PNDG63
molecules aggregate into large non-spherical, amorphous clusters even at high temperature
presumably due to the strong solvophobic effect. Upon cooling, PNDG segments are
recrystallized within these large aggregates, which introduces an additional crystallization
driving force for subsequent fusion/reorganization of preexisting aggregates. However,
fusion/reorganization can be a rare event if the number of preexisting micelles per unit
volume is too low. The existence of large aggregates due to strong solvophobic effect may
thus poses an obstacle to the formation of well-defined polypeptoid nanostructures via
CDSA. As will be described in the following section, the self-assembly pathway and final
aggregate morphology of diblock copolypeptoids become more defined when the PNDG is
replaced by PNOG, i.e., a crystallizable but less solvophobic block.

3.4. Effect of Side Chain Branching on the Solution Self-Assemblies

As we mentioned in Section 2.2, asymmetric branching of the aliphatic N-substituents
has profound impact on the molecular packing and phase behavior of polypeptoid ho-
mopolymers. To understand how side chain branching further influences the solution
self-assembly of amphiphilic diblock copolypeptoids, two types of diblock copolypep-
toids, i.e., PNMG116-b-PNOG94 and PNMG121-b-PNEHG101 (Figure 7a), with nearly iden-
tical molecular weight (i.e., Mn ≈ 25 kDa) and volume fraction of solvophobic block
(fPNOG = 0.73, fPNEHG = 0.74) were recently investigated for their solution self-assembly
behavior in methanol. Both samples were first heated at high temperatures, allowing poly-
mers to be fully dissolved and existed as unimers in methanol. The solution self-assembly
were then triggered by cooling of the respective methanol solution from high temperature
to room temperature.

As seen in Figure 7b,c, PNMG116-b-PNOG94 molecules bearing linear n-octyl side
chains self-assembled into large hierarchical microflowers that comprised of radially ar-
ranged nanoribbon subunits (i.e., flower petals) after ~24 h of assembly time. Such morpho-
logical feature at the final stage of self-assembly has also been captured by solution SAXS,
which gives I(q) ~ q−2 power law behavior at the intermediate q range and followed by an
intensity minimum at q ~ 0.045 Å−1 (Figure 7d). The highly ordered crystalline structure of
PNOG blocks with a typical board-like molecular geometry was also revealed by WAXS,
where the molecules are fully extended in an all cis-amide conformation and are stacked
side by side and face to face simultaneously. Time-dependent SAXS/WAXS (Figure 7d–g)
and AFM results [84] show that the overall self-assembly process is relatively sluggish and
involves the assembly of multilevel building blocks in a stepwise fashion: Upon cooling,
the PNMG116-b-PNOG94 unimers first associate to form amorphous spherical micelles
owing to the high solvophobic content; These amorphous micelles are further aggregated
via a nucleation-and-growth mechanism, resulting in the formation of flower petal junction;
Finally, the growth of the flower petals (i.e., nanoribbon sub-units) occurs by the continu-
ous addition of the amorphous PNMG116-b-PNOG94 materials to the crystallization front
following a 2D crystallization kinetic, evidenced by the Avrami analysis (Figure 7g). For
a 5 mg/mL solution, the entire self-assembly process takes few hundreds of minutes to
complete. The relative sluggish self-assembly process (compared to PNMG121-b-PNEHG101
counterpart) is mainly attributed to the slow epitaxial 2D crystalline growth of board-like
PNOG segments during micellar fusion/reorganization process, resulting in the formation
of long-range ordered crystal lattice at molecular level.
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Figure 7. (a) The chemical structures of PNMG-b-PNOG and PNMG-b-PNEHG used for comparison
purpose. (b) Cryo-TEM and (c) AFM images for PNMG116-b-PNOG94 in a diluted methanol solution.
(d) Representative SAXS profiles of the 5 mg/mL PNMG116-b-PNOG94 methanol solution at different
waiting times (t) after being cooled down to room temperature. (e) Plot of the exponent (a) values
of I(q) ~ q−a near q = 0.006 Å−1 as a function of t. (f) The corresponding WAXS profiles at different
t, where the data have been shifted vertically for clarity. (g) The ζ(t) values (black circles) obtained
from the normalized integrated intensity of the (001) peak at different t. Inset of (g) shows the
corresponding Sharp–Hancock plot. The red solid lines in (g) correspond to the best-fits to the
data using the Avrami–Erofeev expression, ζ(t) = 1–exp[–(kt)n], with n = 2. Figure reproduced from
reference [84] with permission from the American Chemical Society.

By contrast, the PNMG121-b-PNEHG101 molecules bearing bulky branched racemic
2-ethyl-1-hexyl side chains were found to self-assemble into symmetric 2D hexagonal
nanosheets (Figure 8a,b). The best-fit to the SAXS profile of the final PNMG121-b-PNEHG101
nanosheets using the scattering form factor for disk-shaped polymer micelles [123,124]
gives a core thickness of 11.3 ± 0.2 nm and a radius of gyration of the corona chains
of 2.7 ± 0.2 nm. The total thickness of the hexagonal nanosheets is then estimated
to be 23.1 ± 1.0 nm, which is larger than that (16 ± 1 nm) estimated at the dry state
by AFM analysis. Meanwhile, the WAXS profile of PNMG121-b-PNEHG101 nanosheets
(Figure 8d) shows a single diffraction peak at q* = 0.50 Å−1, corresponding to the distance
(1.26 nm) between adjacent PNEHG segments that are separated by the bulky branched
N-2-ethyl-1-hexyl side chains [97]. Grazing-incidence wide-angle X-ray diffraction (GI-
WAXD) measurements were performed to unveil the molecular packing and orientation
inside of the PNMG121-b-PNEHG101 nanosheets. Due to geometric confinement, the large
2D hexagonal nanosheets were laid flat on the Si substrate (inset of Figure 8f), allowing
the molecular orientation within the dried hexagonal nanosheets to be resolved. Aside
from the primary diffraction peak at q* = 0.50 Å−1, multiple higher order peaks located
at
√

3q*,
√

4q*,
√

7q* along the in-plane (qxy) direction were also observed by GIWAXD
(Figure 8e–f), indicating the rod-like PNEHG molecules are packed into a hexagonal lattice
with the long axis of the rods aligned normal to the substrate (and the surface of hexagonal
nanosheets). We speculate that the absence of these higher order peaks in Figure 8d is due
to the relatively strong incoherent scattering from solution WAXS measurements using a
capillary cell. There are also two discrete off-axis streaks with low intensity that are aligned
parallel to qxy, as indicated by the red arrows in the GIWAXD (Figure 8e), possibly due
to the presence of short and non-continuous helix-like segments along the backbone in
low abundance.
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(c) SAXS and (d) WAXS intensity profiles for the 5 mg/mL PNMG121-b-PNEHG101 in methanol.
The solid line in (c) corresponds to the best-fit to the data based on the scattering form factor for
disk-shaped polymer micelles. (e) Two-dimensional GIWAXD image for the PNMG121-b-PNEHG101

hexagonal nanosheets deposited onto a Si substrate. The two off-axis streaks are indicated by
red arrows in (e). (f) One-dimensional GIWAXD profile along the qxy (in-plane) direction. The
corresponding AFM image for the GIWAXD sample is shown in the inset of (f). Figure reproduced
from reference [84] with permission from the American Chemical Society.

Hence, it is evident that the lateral dimension of the PNMG121-b-PNEHG101 nanosheet
is governed by the preferential packing of rod-like PNEHG molecules in a columnar hexag-
onal lattice in 2D, whereas the thickness of the nanosheet core is determined by the height
of hexagonal columns (Figure 9a). Within the columnar hexagonal mesophase, PNEHG
blocks adopt a rod-like molecular geometry with an extended backbone conformation
with the bulky racemic N-2-ethyl-1-hexyl side chains radially and outwardly displayed
along the backbone. Interestingly, it was also found that the final PNMG121-b-PNEHG101
nanosheets were formed immediately (i.e., within seconds) after the solution was cooled
below the clearing temperature, as evidenced by the little change of scattering profiles with
time. Differs from the long-range ordered PNOG crystals, the intermolecular packing of
the rod-like PNEHG blocks favors the formation of a columnar hexagonal LC mesophase
which may not be very long ranged, evidenced by the weak higher order diffraction peaks
even at the dried state (Figure 8f). This is consistent with DSC and WAXD results for the
bulk PNEHG homopolymer with similar DPn (Figure 4a,b). Thus, the formation of the
mesophase within the PNEHG micellar core occurs much more rapidly relative to that of
the crystalline PNOG micellar core presumably due to the less defined molecular packing
structure in the former relative to the latter [37,128].

The correlations among aggregate morphology, molecular packing and N-substituent
architecture (i.e., linear versus branched) of diblock copolypeptoid can be now rationalized.
According to the general packing motif, a single PNOG board-like molecule in the crys-
talline lattice contains three different facets: The main face of PNOG that comprised of both
backbone and N-aliphatic side chain, the surface comprised of PNOG backbone chain ends
and the surface comprised of only N-aliphatic side chain ends, which are perpendicular to
the crystallographic a-, b- and c-axes of the PNOG molecule, respectively (Figure 4c). Since
PNOG blocks are covalently linked with the corona-forming PNMG blocks in the diblock
copolypeptoids, it is reasonable that the PNOG crystals cannot grow along crystallographic
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b-axis. The Avrami analysis on the time-dependent WAXS results also showed that the
crystalline growth of the core-forming PNOGs is two-dimensional (Figure 7g). We there-
fore postulate that the core thickness of the PNMG-b-PNOG nanoribbons is determined
by the crystalline dimension along b-axis, while the other two axes determine the lateral
dimension of the nanoribbon core (Figure 9b). Based on AFM analysis, the average length
of the nanoribbons is approximately 4–5 times larger than their width, which suggests that
the tendency for the core-forming PNOG block to grow along one axis is 4–5 times higher
than the other axis. This is consistent with other previous studies [77–79,127] which show
that the 2D nanosheets assembled from the diblock copolypeptoids bearing board-like
crystallizable blocks from solution usually appears non-symmetrical, such as ribbon-like
or rectangular shapes, rather than forming symmetrical 2D geometry. Yet, how these
elongated 2D nanoribbons are stacked radially along flower petal junction and the detailed
hierarchical self-assembly mechanism of the microflowers remain somewhat ambiguous.
However, it is clear that the nanoribbon formation is due to the favorable molecular packing
along one of the crystallographic axes during the 2D crystalline growth, which is dictated
by the disparate inter- or intramolecular interactions and polymer–solvent interactions
along different crystallographic axes.
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hexagonal nanosheet and (b) PNMG116-b-PNOG94 microflower. The corona-forming PNMG blocks
and possible chain folding of PNOG were omitted for clarity. Figure reproduced from reference [84]
with permission from the American Chemical Society.

By contrast, as the bulky racemic 2-ethyl-1-hexyl side chains are randomly distributed
around the PNEHG backbone (Figure 4c), the rod-like PNEHG blocks would afford
isotropic inter- or intramolecular interactions and polymer–solvent interfacial interaction
in the radial direction of the rods. As the solvophilic PNMG block is chemically linked with
PNEHG block, columnar hexagonal packing of PNEHG becomes energetically favored,
resulting in the formation of large hexagonal nanosheets that possess a symmetrical 2D
geometry (Figure 9a). We also found that the lateral dimension of PNMG121-b-PNEHG101
hexagonal nanosheets can be manipulated from nano-size (e.g., ~200 nm) to micro-size
(e.g., ~2 µm) by tuning the initial polymer concentration within the dilute regime, while the
thickness of hexagonal nanosheets remains unaffected by the concentration [84]. It should
be noted that the symmetrical hexagonal nanosheets formed by PNMG121-b-PNEHG101
mesogens are highly unusual and rarely observed by crystallization or CDSA of typical
crystalline polymers (e.g., polyethylene and polycaprolactone) [129–131]. This finding,
which uses rod-like mesogens as the primary building block to induce the formation of 2D
hexagonal nanosheets via solution self-assembly, sheds new light on the creation of highly
symmetric 2D nano-/micro-scale materials for a wide range of applications.
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4. Conclusions and Outlook

In this article, we review our recent experimental studies on the crystallization-driven
solution self-assembly of amphiphilic diblock copolypeptoids bearing alkyl side chains. It
has been found that supramolecular self-assembly and aggregate morphology of diblock
copolypeptoids in solution are extremely sensitive to their molecular characteristics, such
as block composition, molecular weight and N-substituent architecture. This is because
micellation (solvophilic/solvophobic interaction), crystallization and the interplay between
these two driving forces are directly linked to the detailed molecular characteristics of
the diblock copolypeptoids. Because crystallization is more of a kinetically controlled
process that can lead to non-equilibrium assembly, the spatiotemporal evolution of crys-
tallizable BCPs during solution self-assembly must be carefully characterized in situ in
order to gain a comprehensive understanding on the assembly pathway. Here, we high-
light the use of in situ small-/wide-angle X-ray/neutron scattering in conjunction with
other microscopic techniques in probing the molecular packing, hierarchical structure,
and self-assembly pathways of crystallizable diblock copolypeptoids in solution, which
allow us to better understand their multiscale structural evolution and self-assembly path-
ways. However, in priori design of solution self-assembly process to arrive at a targeted
nanostructure/morphology still remain challenging.

Here, we listed several fundamental questions regarding diblock copolypeptoids
bearing alkyl side chains that remain unsolved: (i) How do the interplay among inter-
/intra-molecular interactions of board-like polypeptoids along different crystallographic
axes dictate the anisotropic growth or the aspect ratio of 1D or 2D nanostructures. Can
these interactions be mediated through chemical design or sample preparation protocols
to achieve a tunable morphology? (ii) If chain folding is inevitable upon crystallization,
in what direction (a or c-axis) do long polypeptoid segments prefer to fold inter-/intra-
molecularly within the nanostructures? How this affects the chain conformation (or packing
density) of solvophilic block, micellar fusion/reorganization, dispersibility and final ag-
gregate morphology in solution? (iii) What lead to the radial stacking of nanoribbons
to form hierarchical microflowers? How can we tune the structure and level of hier-
archy based on the kinetic and thermodynamic behaviors of primary building blocks?
How can we control each growth step that constitute the hierarchical assembly process?
(iv) What is the self-assembly pathway and formation mechanism of hexagonal nanosheets
composed of diblock copolypeptoids bearing asymmetrically branched alkyl side chains,
e.g., PNMG-b-PNEHG? Can the use of mesogenic building blocks with less ordered LC-like
packing serve as a new paradigm for the design of solution self-assemblies with unique
structures and properties? Future efforts that incorporate predictive theoretical tools and
advanced structural characterization methods would be helpful to address these issues.

Nevertheless, it is exciting to see that even for the simplest AB-type diblock copolypep-
toids with alkyl side chains, a variety of well-defined non-spherical nanostructures with
diverse morphology and hierarchy can be readily fabricated by CDSA, ranging from 1D
nanofibrils, to nanorods, to 2D nanosheets and to hierarchical nanostructures. Owing to
the recent advances in controlled synthetic methods, such as the submonomer solid-phase
synthesis and sequential ROP of R-NCAs or R-NTAs, well-defined crystallizable block
copolypeptoids with diverse N-substituent structure and tunable molecular sequences can
now be produced with high efficiency, providing seemingly unlimited choices of polypep-
toid building blocks for solution self-assembly. Besides, by thinking solution CDSA as a
reaction process, recent findings on the living CDSA of several other BCPs (in particular
polyferrocenylsilane-based polymers) that utilizes the “seeded-growth” protocol have
envisioned a more precise control of size dispersity, complexity and hierarchy of polymeric
self-assemblies [5,10,19,22–29]. Considering the unique biological properties of polypep-
toid, these advancements would open new opportunities for the future design of novel
polypeptoid nanomaterials with tailorable structure, property and functionality, which are
potentially useful in molecular biomimicry and biomedical/biotechnological applications.
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