CHE 4275 – ELECTROCHEMICAL ENGINEERING SPRING 2020 LOUISIANA STATE UNIVERSITY

Instructor:	Assistant Professor Christopher G. Arges Room 3315S – Patrick F. Taylor Hall (PFT) Phone #: 225-578-3060 E-mail: <u>carges@lsu.edu</u> Office Hours: 1:00 to 1:50 PM Friday or <u>by appointment</u>		
Class:	1253 Patrick F. Taylor Hall (PFT) 1:30 PM to 2:50 PM Monday and Wednesday		
Course Objectives:	Develop a strong foundation in understanding, analyzing, and communicating electrochemical phenomena and applying electrochemical engineering principles. Note: This is a communication-intensive (CI) course		
Prerequisites:	ChE 3102 (Heat and Mass Transfer) or consent by the instructor		
On-line:	Additional class materials will be posted on Moodle		
Textbook:	<i>Electrochemical Systems, 3rd Edition</i> , John Newman and Karen E. Thomas-Alyea, Wiley, ISBN: 978-0-471-47756-3, (2004)		
Supplemental Texts:	<i>Electrochemical Methods: Fundamentals and Applications, 2nd Edition,</i> Allen J. Bard and Larry R. Faulkner, Wiley, ISBN: 978-0-471-04372-0, (2000)		
Grading:	Homework:	0% - for your own practice	
	Paper analysis:	15% - Individual assignment. Analysis, in the context of electrochemical phenomena, of a peer-reviewed publication.	
	Experimental Project:	25% - Group assignment. Grade will be 50% on report and 50% on oral presentation (20 minutes). Groups of 3 people. Experimental project will occur in Professor Arges' lab.	
	Exams:	60% (2 exams) – One Midterm Exam and one Final Exam. The highest score will count 45% and the lower score will count 15%.	

Project/paper due dates:	Analysis of paper: Wednesday, February 26 th , 2020 at the start of class Oral presentations: Monday and Wednesday, April 13 th and 15 th , 2020 Experimental report: Monday, April 27 th , 2020 at the start of class
Exam schedule:	Midterm: Monday, March 2 nd , 2020 in class Final Exam: Friday, May 8 th , 2020 at 10:00 AM to 12:00 PM
Exam format:	Closed book, equation sheet provided, calculator allowed. Phones and computers are prohibited during exam.
Course policies:	Homework will not be graded and credit will not be given. The intent of the Homework is to help you learn the material so you can do well on the exam. I encourage you to work together on the homework.
	Students are expected to take each examination on the pre-arranged dates. Excused absences from exams will follow LSU Policy Statement 22 (PS-22).
	Students with Accommodation Letter: Submit your letter in person to me during office hours or at a scheduled appointment. I will not take the letter after class.
	Regrade requests for exams, presentation, and reports must be made in writing. Please specify which part that you want regraded and please justify your request. The regrades will be due at the start of the next class period after returning exams or reports. Late regrade requests will not be accepted. You can earn or lose points from a regrade request.
	Violation of academic integrity will be immediately reported to Student Advocacy and Accountability (SAA). I will recommend to SAA that the student fail the course for any integrity violation.
	This is a certified Communication-Intensive (C-I) course which meets all of the requirements set forth by LSU's Communication across the Curriculum program, including
	 Instruction and assignments emphasizing informal and formal [mode 1] and [mode 2]; Teaching of discipline-specific communication techniques; Use of feedback loops for learning; 40% of the course grade rooted in communication-based work; and Practice of ethical and professional work standards

Topics	Reading materials
Part 1: Introduction to Electr	
Historical perspective and industrial	Newman – Chapter 1 and supplemental
applications	readings
The chemical engineering connection:	Newman – Chapter 1 and supplemental
definitions, thermodynamics, kinetics, and	readings
transport; introduction to electrochemical cell	leadings
overpotentials; Faraday's law of electrolysis,	
conservation of charge/electroneutrality	
Part 2: Thermodynamics of E	lectrochemical Systems
Thermodynamics in terms of electrochemical	Newman – Chapter 2 and supplemental
potential, phase equilibrium, equilibrium	readings
potential	
Electric potential	Newman – Chapter 3 and supplemental
•	readings
Electrochemical double layer	Newman – Chapter 7 and Supplemental
-	readings
Pourbaix Diagrams	Supplemental readings
Determining activity coefficients	Newman – Chapter 4 and supplemental
	readings
Reference electrodes	Newman – Chapter 5 and supplemental
	readings
Potentials of cells with junctions; Nernst	Newman – Chapter 6 and supplemental
potential	readings
Part 3: Reaction Kinetics in E	
Electrode kinetics: Butler-Volmer kinetics, Tafel	Newman – Chapter 8 and supplemental
slope, activation/surface overpotentials;	readings
exchange current density	
Part 4: Transport Phenomena ir	
Transport in infinitely/moderately dilute	Newman – Chapter 11 and supplemental
solutions: electric field driven migration,	readings
conductivity, diffuse potentials, transference	
number, ionic mobility and diffusion coefficients,	
introduction to limiting current densities	
Transport in concentrated solutions: reference	Newman – Chapter 12 and supplemental
velocities and multi-component species	readings
transport	Nouman Chapter 10 and supplay sub-
Thermal transfer in electrochemical systems:	Newman – Chapter 13 and supplemental
thermal galvanic cells	readings
Convective-transport problems and fluid	Newman – Chapters 9, 10,15, 17 and
mechanics in electrochemical systems, electrokinetic phenomena, and electrocapillary	supplemental readings
phenomena; streaming potential, fluid flow in a	
rotating disk and an annulus,	
rotating use and an annulus,	

Part 5: Current Distribution in	Electrochemical Systems
Application of potential theory	Newman – Chapter 18 and supplemental readings
Effect of migration on limiting currents and	Newman – Chapters 19, 21 and
currents below the limiting current density	supplemental readings
-	
Concentration overpotential	Newman – Chapter 20 and supplemental readings
	readings
Porous electrodes	Newman – Chapter 22 and supplemental
Dert Guladustrial	readings
Part 6: Industrial	Applications
Electroplating	4
Corrosion	4
Semiconductor applications: semiconductor	
electrodes, electroplating, chemical mechanical	You will select a paper for your analysis on one of these topics. We will cover (maybe not all) these topics in class. Readings to be assigned later on.
polishing, nanoionics (non-volatile memory)	
Electrosynthesis of chemicals: chloro-alkali	
process, water electrolysis, carbon dioxide	
electrolysis, photoelectrochemical cells,	
ammonia synthesis	
Energy storage and conversion: fuel cells,	
batteries, supercapacitors, reverse	
electrodialysis, thermalgalvanics	
Electrochemical separations: electrodialysis,	
electrodeionization, capacitive deionization,	
electro-swing adsorption	
Sensors: gas detectors, biologics	
Bio-electrochemical systems: microbial fuel	
cells, microbial desalination, etc.	
Part 7: Introduction to elec	
Voltammetry	Note: This part is not the intent of this
Chronoamperometry	course. LSU offers a course dedicated to
Electrochemical impedance spectroscopy and	this topic: Chem 4559. We will briefly
electric circuit equivalent modeling	cover this topic in real-time as necessary
	to help explain other topics.
	See Bard and Faulkner Textbook
	DEE DAIU AIIU I AUINIEI TEXUUUN