CHE 3102 – HEAT AND MASS TRANSFER SPRING 2018 LOUISIANA STATE UNIVERSITY

Instructor:	Assistant Professor Christopher G. Arges 3315S – Patrick Taylor Hall Phone #: 225-578-3060 E-mail: <u>carges@lsu.edu</u> (please begin subject line with 3102) Office Hours: Friday 3:30 PM to 4:30 PM or <u>by appointment</u>
Class:	Room 0006 Lockett 8:30 AM to 10:20 AM Tuesday and Thursday (note: 10 minute break at 9:20 AM)
Teaching Assistants:	Luis Manuel Office hours: 11:45 to 12:45 AM Tuesday 3304N PFT E-mail: Imanu14@Isu.edu
	Subarna Kole Office hours: 11:45 to 12:45 AM Thursday 3304N PFT E-mail: skole1@lsu.edu
TA led Discussion:	Optional for students. Occurs every Friday from 1 to 1:50 PM in 1126 PFT. Dates of no discussion section: 01/12, 03/02, 03/30, 04/06. Last date for discussion will be 04/27.
Course Objectives:	Promote problem formulation and solving abilities required for the analysis of heat and mass transport phenomena occurring in chemical, biological, and materials engineering.
Key Learning Objectives:	 Students should be able to determine the concentration and temperature profiles, as function of space and/or time, by formulating conservation equations (either differential form or shell balance form) and selecting appropriate constitutive relationships. Additionally, they should be able to calculate the total molar fluxes and heat flux. To do this, students should be able to: Make justifiable assumptions about the system from the problem statement Simplify their conservation equations from assumptions and given information in the problem statement. Formulate appropriate boundary and initial conditions Draw diagrams that depict the direction of fluxes Solve the conservation equation(s) analytically or numerically
	coefficients from correlations (e.g., Sherwood # and Nusselt #).

	3.) Students should be able to analyze heat and mass transfer resistances using dimensionless parameters (e.g., Biot #, and Péctlet #). This includes deriving dimensionless parameters by making conservation equations dimensionless.			
	4.) Students should be to select appropriate proportionality constants for their constitutive relationships (e.g., pseudobinary diffusion for dilute species in a liquid or Knudsen diffusion for gases in macroporous solid).			
Prerequisites:	A grade of "C-" or better in CHE 3101			
On-line:	Additional class materials will be posted on Moodle			
Textbook:	BSLK: <i>Introductory Transport Phenomena, 1st Edition</i> , R. B. Bird, W.E. Stewart, E. N. Lightfoot, and D.J. Klingenberg, John Wiley & Sons, Inc. (2014)			
Supplemental Texts:	<i>Transport Processes and Separation Process Principles 4th Edition</i> , C. J. Geankoplis, Prentice Hall (2003)			
	<i>Analysis of Transport Phenomena 2nd Edition</i> , W. M. Deen, Oxford University Press (2011)			
Grading:	Homework:	0%		
	In-class pop quizzes	: 15% (multiple quizzes will be given – 2 lowest scores will be dropped) – 20 minute quizzes		
	Exams:	85% (3 exams) – Two midterm exams and one final exam. The lowest score of the three exams will count 15%, while the other two scores count for 35% each. Final exam will be cumulative.		
	Note:	One numerical method assignment will be given as extra credit. The assignment will be graded by me.		
Exam schedule:	Midterm #1: 8:30 AM Tuesday, February, 27 th , 2018 – 0006 Lockett Midterm #2: 8:30 AM Thursday, April, 5 th , 2018 – 0006 Lockett Final Exam: 12:30 PM Thursday, May, 3 rd , 2018 – 0006 Lockett			
Exam format:	Closed book, equation sheet provided, no calculator allowed. Phones and computers are prohibited during exam.			

Grade policy: The Cain Department of Chemical Engineering "C" requirement policy went into effect at the beginning of the Fall 2016 semester. The quality point deficiency/drop system is no longer in use. Under the new policy, students must earn a "C-" or better in 9 core sophomore and junior classes to enroll in subsequent classes that list those classes as prerequisites.

Course policies: Students with Accommodation Letter: Submit your letter in person to me during office hours or at a scheduled appointment. I will not take the letter after class.

Homework will not be graded. Homework feedback can be provided upon request to the TA.

The intent of the Homework is to help you learn the material so you can do well on the exam. I encourage you to work together on the homework.

Attending the class and studying the material in real-time will help you do well on the quizzes and will curtail cramming material before an exam.

Students are expected to take each examination on the pre-arranged dates. Excused absences from exams will follow LSU Policy Statement 22 (PS-22).

A make-up exam for an excused absence will be given the week before Finals. The exam will be cumulative and will count 35% toward your final grade (i.e., it can not count as your lowest score).

Regrade requests for exams must be made in writing. Please specify which part of the exam that you want regraded and please justify your request. The regrades will be due at the start of the next class period after returning exams. Late regrade requests will not be accepted. You can earn or lose points from a regrade request.

Violation of academic integrity will be immediately reported to Student Advocacy and Accountability (SAA). I will recommend to SAA that the student fail the course for any integrity violation.

Topics	Reading materials
Part 1: Introduction to Tra	ansport Phenomena
Construct of transport phenomena; levels and length scales, constitutive relationships; continuum approximation	Deen – Chapter 1 – sections 1.1 to 1.3 and 1.6; Appendix A – all BSLK – Chapter 0 – all BSLK – Appendix A – sections A.4, A.5, and A.7 Geankoplis – Chapter 6 – sections 6.1A and 6.1B
General forms of conservation equations (control volumes, point/differential balances, interfacial balances); Gauss's theorem; material derivative;	Deen – Chapter 2 – sections 2.1 to 2.8

Part 2: Mass T	Fransport
Introduction to mass transfer: Continuity	BSLK – Chapter 17 – all sections
equation and the total conservation of mass,	BSLK – Chapter 18 – sections 18.1 to
Fick's 1 st Law of Diffusion, conservation	18.3, 18.6 to 18.7
balance of individual chemical species	BSLK – Chapter 19 – sections 19.1 to
Steady-state mass transfer examples without	19.3 (pages 563 to 471)
source terms	Deen – Chapter 1 – pages 3 to 5
Expressions for diffusion coefficients:	Deen – Chapter 2 pages 41 to 44
Binary diffusion coefficient, pseudo-binary	Geankoplis - Chapter 6 - sections 6.1 to
diffusion coefficient, self-diffusion coefficient	6.5
Diffusion coefficients dependence on	
concentration	
Predicting diffusion coefficients	
Diffusion in porous solids:	
Knudsen diffusion coefficient, permeability	
coefficient	
Mass transfer coefficient	
Simultaneous heat and mass transfer: Soret	Deen Chapter 14 – sections 14.4
Effect	BSLK Chapter 19 – sections 19.3
Steady-state mass transfer examples with	BSLK – Chapter 18 – sections 18.4 to
source terms and making conservation	18.5, 18.10
equations dimensionless	Deen – Chapter 3 – examples 3.2-1, 3.2-
	2, 3.2-3, 3.2-4, 3.2-7, 3.4-3, 3.5-1
Transient mass transfer via diffusion – solving	Deen – Chapter 4 – sections 4.2 and
PDEs via similarity technique (method of	example 4.2.1
combination of variables)	BSLK – Chapter 19 – sections 19.5 and
	examples 19.5-1 and 19.5-2
Introduction to coupled fluxes via Stefan-	BSLK – Chapter 24 – sections 24.1 to
Maxwell Approach	24.2, 24.5 to 24.7
	Deen – Chapter 14 – section 14.5
Steady-state mass transfer via forced	Deen – Chapter 10 – sections 10.1 to
convection in confined flows	10.3 and example 10.3-1
	BSLK – Chapter 18 – sections 18.8 and
	18.9, Chapter 19 – section 19.1
Mass transfer coefficient correlations: relating	Deen – Chapter 10 – sections 10.3
Sherwood# to Reynolds # and Schmidt#	Class notes
Macroscopic mass balances and	BSLK – Chapter 23 – sections 23.1, 23. 5
operating-equilibrium line analysis	to 23.6

Part 3: Heat T	ransport
Introduction to steady-state heat transfer and	BSLK – Chapter 9 – section 9.2
Fourier's Law	BSLK – Chapter 10 – sections 10.1 to
Steady-state heat transfer via conduction	10.7
between solids and solids/fluids with and without	Deen – Chapter 10 – examples 3.2-5 &
source terms.	3.4-2
Introduction to Biot #	Geankoplis – Chapter 4 – sections 4.1 to
	4.7
Heat transfer mechanisms: expressions for	de Pablo & Schieber Handout from
thermal conductivity coefficients and the heat	Molecular Engineering Thermodynamics
transfer coefficient	BSLK – Chapter 9 – sections 9.5 to 9.11
Steady-state heat transfer via convection: free	BSLK – Chapter 9 – section 9.1
convection, forced convection in (confined	BSLK – Chapter 10 – sections 10.9 to
geometries and unconfined geometries).	10.10
Introduction to the Péctlet #	BSLK – Chapter 14 – sections 14.1 to
Heat transfer coefficient correlations: relating	14.6
Nusselt # to Revnolds # and Prandtl#.	Deen – Chapter 10 – sections 10.1 to
·····	10.2 and example 10.2-1
	Geankoplis – Chapter 4 – sections 4.5
	to 4.7
Other topics in heat transfer:	BSLK – Chapter 11 – sections 11.5 &
Radiation heat transfer	11.6
 Introduction to the overall, macroscopic 	BSLK – Chapter 16 – sections 16.2,
energy balance – accounting for	16.5, and example 16.4-2
mechanical effects in thermal transport	Deen – Chapter 2 section 2.5 – pages 39
Transient heat transfer	to 41 only
 Dealing with phase changes 	Deen – Chapter 10 section – section
	10.6
	Geankoplis – Chapter 4 – sections 4.10
	to 4.11
	Geankoplis – Chapter 5 – sections 5.1 to
	5.4
Part 4: Transport Principles Applied	to Unit Operations (tentative)
Heat exchangers	Geankoplis – Chapter 4 – section 4.9
Mass transfer unit operations for separations:	Readings to be assigned later on
 Gas-liquid operations: gas absorption, 	
evaporation, & distillation	
Liquid-liquid separations (e.g., extraction)	
 Solid-fluid operations: 	
adsorption/absorption and	
chromatography	
Membrane separations	