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CORRECTING FOR MEASUREMENT ERROR
ATTENUATION IN STRUCTURAL EQUATION MODELS:
SOME IMPORTANT REMINDERS

ARTHUR G. BEDEIAN
Louisiana State University

DAVID V. DAY
Pennsylvania State University

E. KEVIN KELLOWAY
University of Guelph

The increasing popularity of structural equation models that correct for attenuation due
to measurement error is noted. The methods by which structural models correct for the
effects of measurement error are reviewed. Next, implications of such disattenuation for
interpreting the results of structural equation models are considered. Recommendations
are advanced for addressing the practice of disattenuation, and caution is urged in
drawing inferences based on disattenuated parameter estimates.

Given that “all observation is fallible,” variables in the behavioral and
social sciences are seldom, if ever, perfectly measured (Duncan, 1975, p. 113).
Indeed, in applied areas, measured variables frequently have reliabilities
estimated at less than .80 and, not too uncommonly, less than .70 (Williams &
James, 1994). Thus, as Cohen and Cohen (1983, p. 407) noted, it is hardly
surprising that R? values approaching even .50 are scarce, especially when as
much as 30% of a criterion’s (Y) variance may be subject to the effects of
random measurement error and are, by definition, inaccessible to prediction.
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Measurement

Error due to unreliability poses a special challenge to applied researchers
(Clogg, 1992). To the extent that standard techniques of analyses become
misleading if measurement error is present, fallible (i.e., unreliable) measures
bias relationship estimates between constructs, with subsequent effects on
Type I and II errors (Schmidt & Hunter, 1996). This, understandably, reduces
the confidence that may be vested in tests of theoretical models.

Although measurement error may also be due to systematic sources, such
as errors in scoring or coding, in discussions of reliability (such as that here)
the term measurement error typically refers to the extent to which random
(i.e., unsystematic) error affects measurement of a given variable (see Feldt
& Brennan, 1988, for a detailed explanation of reliability theory). As classi-
cally conceived, there have been three empirical approaches to estimating the
reliability of a measure or process (Pedhazur & Schmelkin, 1991, p. 88):
the correlation between scores on the same measure given at different times
(the test-retest approach), the correlation between comparable forms of the
same measurement (the equivalent forms approach), and the correlation
between comparable parts of the same measure (the internal-consistency
approach). Of these approaches, the coefficient-alpha formula (Cronbach,
1951) for estimating a measure’s internal consistency is probably the most
widely used (Peterson, 1994). A technical treatment of the theory underlying
coefficient alpha is available in Cortina (1993).

The popularity of the coefficient-alpha formula stems, in part, from the
fact that unlike other traditional approaches to estimating reliability, it can be
calculated based on a single administration of a single form (Zimmerman,
Zumbo, & Lalonde, 1993). Moreover, in a two-variable model, alpha may be
used in a “correction” formula to estimate the correlational value (i.e., the
disattenuated or “true” degree of association) one would expect if either or
both variables were measured without error (i.e., reliability equal 1.00;
Bohrnstedt, 1993). Following Spearman (1904), in situations where the
correction for attenuation is to be made in both variables, the expected value
is estimated by dividing the observed correlation between the variables by
the square root of the product of their reliability coefficients (the maximum
possible correlation between the imperfectly measured variables). If the
correction is to be made in only one of the two variables, the square root of
the reliability coefficient for that variable alone would be placed in the
denominator. For a historical overview of the correction for attenuation, as
well as a review of its applications and interpretations in meta-analysis and
validity generalization theory, see Muchinsky (1996).

More recently, a second approach to correcting for attenuation has gained
popularity. This approach, stemming from Joreskog’s (1970) pioneering
work in structural equation modeling and the associated Linear Structural
Relations computer program (LISREL; J6reskog & Sérbom, 1993), has been
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rapidly accepted throughout the behavioral and social sciences (Kelloway,
1996). A much-heralded feature of LISREL and other such programs is that
they make allowances for less-than-perfect measurement, yielding what are
generally considered to be “purified” or “uncontaminated” estimates of the
“true” relation between a causal and a response variable (Reuterberg &
Gustafsson, 1992). Structural equation models thus permit researchers to
study the influence of one “error-free” construct on another, thereby “elimi-
nating” potential bias due to attenuation (Huba & Harlow, 1987).

Although correcting for attenuation was first proposed more than 90 years
ago, the appropriateness of adjusting for measurement error remains contro-
versial (Muchinsky, 1996). Advocates maintain that “correction is not only
desirable but critical to both accurate estimation of scientific quantities and
to the assessment of scientific theory” (Schmidt & Hunter, 1996, p. 199).
Critics counter that in an imperfect world there is no such thing as a perfect
measure, and that when underestimates of reliability are used, the resulting
disattenuated correlation is overestimated, thereby potentially leading re-
searchers into a “fantasy world” (Pedhazur & Schmelkin, 1991, p. 114).

Given these contrasting views, the purpose of the present article is to link
the growing structural equation modeling literature to the correction for
attenuation literature. In this respect, despite a long history, we are of one
with Schmidt and Hunter (1996), who maintain that technical presentations
of issues associated with corrections for attenuation have proved inadequate
in informing applied researchers of the nuances associated with correcting
for measurement error. Moreover, whereas prior presentations have ad-
dressed measurement error in other more contemporary analytic procedures
(e.g., Carroll & Stafanski, 1994), no prior treatment solely focusing on issues
related to corrections for attenuation as applied to structural equation models
has been published in this form.

Establishing Causal Priority

Researchers in numerous fields have used structural equation models to
deal with error simultaneously in measurement and estimation. Such appli-
cations require identifying causal interrelations among all relevant con-
structs. Several authors, including Bollen (1984), Cohen, Cohen, Teresi,
Marchi, and Velez (1990), and Bollen and Lennox (1991), have noted,
however, that establishing causal priority in structural equation models can
be problematic. Following either classical test theory or factor analysis
models, most researchers assume that so-called indicators are “caused” by
underlying latent variables. Figure 1(a) presents a simple path diagram
incorporating this assumption. As shown, two indicators (x; and x;) are
influenced by a latent variable £,. The coefficients associated with each
indicator (A, and A,) may be viewed as factor weights reflecting the influence
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(a) (b)

Y1 Yz

Figure 1. Two alternative measurement models.

within each indicator accounted for by &,. The & variables represent errors
resulting from the imperfect measurement of &, by x, and x,; essentially
residuals, in this theoretical perspective (unlike the classical theory view),
these errors may be random or the result of systematic influences not
explicitly modeled. The latent variable in Figure 1(a) might be role stress,
and the indicators might be four measures of it. Or, &, could be job perfor-
mance and the x;s various performance measures.

Although less commonly used, an alternative model may be equally valid.
In this model, the causal direction between indicators and latent variables
may be reversed. That is, indicators may be viewed as causing latent vari-
ables. Figure 1(b) presents a simple path diagram incorporating this perspec-
tive. In contrast to Figure 1(a), Figure 1(b) presents two x; correlated indica-
tors that influence the latent variable, &,. The ¥y; coefficients give the
association of x; and &,. If, for instance, &, represented socioeconomic status,
x; and x, might be education and income (Bollen, 1984). A change in
education or income is thus expected to alter a person’s socioeconomic status,
not vice versa.

Discussing the alternative models depicted in Figures 1(a) and 1(b),
Bollen and Lennox (1991) and MacCullum and Browne (1993) noted that
the models incorporate contrasting implications that result in different con-
ceptions related to the measurement and selection of indicators. For example,
causal indicators associated with a given latent variable need not be positively
intercorrelated or, stated differently, internally consistent. Thus, whereas an
expectation of high positive correlations among indicators in situations
analogous to Figure 1(a) would be reasonable, there is no basis to expect high
intercorrelations in situations matching Figure 1(b).
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In “differentiating between indicators that influence, and those influenced
by, latent variables,” Bollen and Lennox (1991, p. 305) challenged the
conventional notion of reliability. In doing so, they showed that the traditional
idea of reliability relating to the consistency (or inconsistency) among several
error-prone measurements does not apply for indicators that cause latent
variables. Accordingly, the discussion that follows is purposely restricted to
situations such as that depicted in Figure 1(a), which is most often the
perspective adopted in structural equation modeling.

Disattenuation in Structural Equation Models

As noted, Spearman’s (1904) formula for removing error due to attenu-
ation in one of two variables requires dividing their observed correlation by
the square root of a focal variable’s reliability coefficient. By contrast,
structural equation models correct for measurement error by estimating the
“true” correlation between a causal and a response variable, for example, X
and Y. This is achieved by assuming that all the random error in the indicators
underlying X (e.g., x;, X5, X3, X4) is essentially residual variance, and the
correlation between X and Y is estimated free from these residual variances.

To illustrate, within the context of situations in which indicators are
viewed as being caused by underlying latent variables (i.e., Figure 1[a]),
consider the path diagram in Figure 2. To correct the observed correlation
between X and Y for measurement error in X only, the reliability of the
composite sum of x;, xp, x3, and x4 (i.e., X,) would be estimated using the
Spearman-Brown prophecy formula (Cohen et al., 1990, p. 189, Equation 1):

"xx=————kzj 1
KT k-7 M

where k is the number of items being added, r is the average correlation across
items, and all item standard deviations are assumed equal. Thus, for k=4, as
in Figure 2, assuming that the mean correlation across items is .40, the reliability
of the composite sum of x;, x;, x;, and x4 is 4(.4) / 1 + (4 — 1).4 =.727.

The correlation between the composite X, and Y is then a function of the
correlations r; and 7, and k (Cohen et al., 1990, p. 189, Equation 2):

R

[k +k(k— 1) ry]> @

rx.r=

For the above data, assuming r;, = .2, the correlation of the composite X,

and Yis (2 + .2 +.2 +.2) / (4 + 4[4 — 1][.4])° = .270. Correcting this value

for attenuation by dividing the correlation between the composite X, and Y

by the square root of the reliability of the composite yields the result .270 /
7273 = 317.
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The similarity between this disattenuation procedure and Spearman’s
(1904) correction for attenuation formula is apparent (Bagozzi, 1981). In the
above instance, as in Spearman’s (1904) formula, the causal estimate of X’s
effect on Y is based on a theoretically perfectly reliable measure of X as
contrasted with the imperfect measure that would be the result of a simple
linear composite of the indicator variables x;, x,, x3, and x,.

Implications of Disattenuation

Although the consequences of imperfect measures for the magnitude and
form of relationships between variables remain a continuing topic (e.g.,
Bedrick, 1995; Muchinsky, 1996; Schmidt & Hunter, 1996), the implications
of disattenuation for interpreting the results of structural equation models
have not yet been sufficiently emphasized. In this regard, first, it should be
realized that not all measurement error is independent across variables.
Second, it should be understood that structural equation modeling is subject
to a range of statistical conditions. Third, it should be appreciated that
remedial adjustments for measurement error provide results based on hypo-
thetical rather than obtained data.

Measurement Error Across Variables

Although in structural equation modeling it is commonly hypothesized
that errors of measurement associated with indicators are uncorrelated, this
is not necessarily always the case, especially in cross-sectional studies
(Joreskog, 1993, p. 314n). If measurement error correlates from one indicator
to another, this suggests that the indicators measure “something else” or
“something in addition to” the construct they are believed to represent
(Joreskog, 1993, p. 297). Correlations between such error terms must then
be critically judged and substantively interpreted to ensure that a construct’s
meaning and dimensionality are as intended. Such judgments and interpre-
tations are especially complicated in cases where measured variables might
be related to a latent variable by means of an unmeasured common cause
(Bookstein, 1986, p. 208).

Whereas Anderson and Gerbing (1988) have reviewed the relevant litera-
ture for guidance on appropriately operationalizing indicator variables to
ensure their fidelity, a related concern centers on the observed correlations
among individual causal and response variables. The absolute and relative
magnitudes of intercorrelations among a latent variable’s indicators not only
affect the acceptability of a model (based on goodness-of-fit measures) but
also can affect the correlations among a model’s other latent variables (Reddy,
1992). This possibility is well-known but is insufficiently considered by
some modeling practitioners.
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In short, the resulting misspecifications may not only affect effects that
might emerge if such correlated errors were not present but also yield effects
that appear substantively important yet are merely artifacts of violated
statistical assumptions relating to covariation in measurement error (Kessler &
Greenberg, 1981, pp. 145-146). Indeed, as shown by Cohen and Cohen (1983,
pp. 408-409; Cohen et al., 1990), corrections for attenuation of relationships
in multivariable models can result in either increases or decreases in esti-
mated path coefficients, even including changes in sign. Moreover, such
estimates may exceed £ 1.00 (i.e., Heywood cases), thus yielding improper
solutions (Dillon, Kumar, & Mulani, 1987).

Perhaps the most common result, however, in such situations is artificially
inflated parameter estimates (Reddy, 1992). To illustrate this result, we
estimated the structural model depicted in Figure 3. All estimates were based
on the predicted population covariance matrix per the specified model. Each
indicator was arbitrarily assigned a mean of 10 and a standard deviation of
2. Initially (Case A in Figure 3), all correlations between indicators (x;, y;)
were set to .20. Under these circumstances, the coefficients associated with
each indicator (A;) equal .45, and parameter estimate (Y) relating X and Y
equals 1.00.

In the next three analyses (Cases B through D), the intercorrelations
between the y; indicators were increased to .40, .60, and .80, respectively,
with all x; indicators intercorrelating .20. Given these new circumstances,
coefficients associated with individual indicators remain constant within
each case, but the parameter estimate (y) relating X and Y drops dramatically
from .71 to .58 to .50.

In essence, the smaller the intercorrelations among y; indicators, the
greater the disattenuation, thereby resulting in larger parameter estimates (Y).
Other things equal, when the purpose is to test a proposed structural parame-
ter between X and Y, modelers in Cases A through D are “rewarded” for poor
measurement. In all four cases, the resulting parameter estimate (y) exceeds
the intercorrelation of the indicators underlying the proposed latent variables.
As shown in Cases E, F, and G, this outcome is symmetrical regardless of
which indicators (predictor or criterion) are poorly measured. Whereas
structural equation modeling advocates (e.g., Huba & Bentler, 1982) have
argued that reliance on latent-variable models is “a great virtue,” especially
when variables are measured with large amounts of error, critics (e.g.,
Baumrind, 1983) suggest that, however sophisticated, statistical procedures
cannot possibly compensate for poor-quality measurement. This position
stresses that, counterarguments concerning allowances for imperfect mea-
surement aside, latent-variable models (like other analytic procedures)
equally demand high-quality measures if valid inferences about causal rela-
tionships are to be made.
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Case A: All s = .20
A, = .45 A, = .45
Al - a5 Af = .45
22 = a5 A = .45
y = 1.00
Case-B: rs for ¥yr ¥pr ¥y = .40 Case B: s for X, Xy, X; = -40
A, = .45 Ay = .63 A = .63 A = .45
A} = .45 Mg = .63 A = .63 Ag = .45
A2 - .5 A = .63 2 - .63 Ag = .45
3 y = .71 vy = .71
Case C: Is for ¥,, ¥,, ¥, = .60 Case F: I8 for X,, X, X3 = 60
A, = .45 A, = .77 A, = .77 A, = .45
Al = a5 A = .77 Ay = .77 Al = 45
22 = .45 A = .77 I A3 = .45
3 y = .58 Yy = .58
Case D: I1s for ¥y ¥y ¥, = .80 Case G: s for X Xp0 Xy -h.so
A, = .45 A, = .89 A, = .89 A, = .45
Al « 45 Ad = (89 Al = la9 Ad = .45
A2 = .45 Ag = -89 A2 = .89 Ag = .45
3 v = .50 v = .50

Figure 3. Causal estimates and corrections for attenuation.
Note. All models estimated assuming M = 10 and SD = 2 for each observed variable. Unless otherwise noted,
all correlations between indicators (x;, y;) =.20.

Statistical Conditions

Although seldom explicitly stated, the statistical theory underlying struc-
tural equation modeling rests on certain assumptions that, if unmet, may yield
biased inferences. For example, to obtain true estimates of population coef-
ficients, it is not only necessary to obtain a random or representative sample
from a clearly defined universe (Joreskog, 1993) but also to ensure that the
number of cases available for analysis is sufficiently large to gauge the
relevance of first-order asymptotic statistical theory. The question of sample-
size adequacy in structural equation models has been addressed by several
authors (e.g., MacCallum, Browne, & Sugawara, 1996; Marsh & Balla,
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1994). In this connection, asymptotically distribution-free statistical tech-
niques are available in Bentler’s (1989) structural equation modeling pro-
gram, known as EQS. With regard to the importance of a specific sampling
scheme, the statistical theory underlying structural equation modeling ac-
counts only for sampling error that occurs with the random sampling of a
specified population. Descriptions of target populations and sample-selection
procedures are noticeably lacking from most structural equation modeling
reports. As Joreskog (1993, p. 30) noted, without both a clearly defined
universe and sample-selection scheme, it is difficult to assign meaning to
concepts, such as reliability, that can only be defined for measurements on a
known population and have a value unique to that population.

More specifically, the less representative or more idiosyncratic a sample
is, the more likely it is that inaccuracies in measurement will occur due to
chance. In particular, because reliability coefficients are functions of the
sample on which they are based, it follows that the reliability coefficients
used in correcting a parameter estimate should be based on a generalizable
data set (Bobko, 1983). In this respect, a reliability coefficient is valid only
when its standard error of measurement is of the same order of magnitude for
achosen population’s entire range of scores (Bobko & Rieck, 1980). Whereas
correcting for attenuation does statistically correct for measurement error,
doing so will not correct for sampling error. Thus, correcting for attenuation
cannot enhance a structural model’s generalizability.

Hypothetical Versus Obtained Data

A final implication of disattenuation for interpreting the results of struc-
tural equation models follows from the character of parameter estimates that
take attenuation into account over those that do not (Cohen et al., 1990, p. 192).
In this regard, Cohen and Cohen (1983) and Freedman (1991) combined to
caution that because parameter estimates corrected for attenuation are based
on hypothetical rather than obtained data, they cannot and should not be
translated into generalizable empirical claims with purported practical value.
Indeed, Cohen and Cohen (1983) advised that because correlations corrected
for attenuation are hypothetical, and relatively little is known about the
sampling distribution of corrected coefficients (cf. Rogers, 1976), “no sig-
nificance tests can be computed on their departure from zero or any other
value” (p. 69). McNemar (1969) further cautioned that whereas corrected
correlations may be theoretically important, they are of little practical value
because they cannot be used in prediction equations. He said, pointedly, “the
prediction of one variable from another and the accompanying error of
estimate must be based on obtained . . . rather than true scores” (p. 171).

In situations where internal consistency is an inappropriate measure of
reliability, Cohen et al. (1990), echoing an earlier recommendation advanced
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by Block (1963), suggested using an external criterion of reliability (based
on either a more traditional approach such as test-retest or simply an educated
guess by a knowledgeable researcher) to disattenuate parameter estimates.
Care, however, should be exercised in using test-retest or split-half reliability
estimates for this purpose, because the assumption of randomly distributed
error terms may be violated in the case of both techniques (Blalock, 1965).
Moreover, Muchinsky (1996) warned that accurate estimates of test-retest
reliabilities depend not only on the nature of the variables being measured
but also on the time duration in question.

Along these same lines, Won (1982) advised researchers to conduct a
“sensitivity analysis” of parameter estimates using plausible upper bound and
lower bound reliability values. Doing so cannot only yield insights into the
sensitivity of parameter estimates to varying amounts of measurement error
(Bollen, 1989, p. 312) but also recognizes that reliabilities are seldom
invariant from one application to another. A procedure for estimating confi-
dence bands or intervals for parameters corrected for attenuation has been
described by Forsyth and Feldt (1969).

Discussion

The preceding implications have not been enumerated in the sense of
depreciating the usefulness of structural equation modeling. To the contrary,
care should be taken to distinguish between the limitations and assumptions
of structural equation modeling and the manner in which it is applied
(Williams, 1995). In this respect, the consequences of interpreting findings
based on disattenuated parameter estimates have previously not been suffi-
ciently emphasized.

To the extent that corrections for attenuation are used, modelers have taken
diverse positions. At one extreme, Bookstein (1986) argued that, because the
correction for attenuation logic used in structural equation models rests on
what he considered to be unverifiable assumptions about measurement error,
researchers should never inflate parameters associated with latent variables.
Occupying a middle ground, Cohen et al. (1990) recommended that re-
searchers routinely report the composite reliabilities of all latent variables.
As an estimate of a latent variable’s internal consistency, composite reliability
is helpful in ascertaining how errorlessly a latent variable is approximated by
its designated indicators (Bacon, Sauer, & Young, 1995). Cohen et al. (1990)
asserted, and data provided by Gavin and Williams (in press) from the job
satisfaction domain confirmed, that it is not uncommon to find latent vari-
ables measured with effective reliabilities that would be considered unaccept-
able in more traditional analyses.

At an opposite extreme from Bookstein (1986), Rosenthal (1984), writing
in the context of meta-analysis, suggested that to avoid potential misunder-
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standing of corrected statistics, both corrected and uncorrected parameter
estimates should be presented (p. 30). This suggestion is consistent with the
spirit of the American Educational Research Association’s Standards for
Educational and Psychological Tests (1985), in which researchers are ad-
vised that if correlation coefficients are corrected for attenuation, *“full
information” relevant to the correction should be presented (Standard 1.17,
p. 17). In accord with both Cohen et al. (1990) and Rosenthal (1984), we
likewise recommend that the reporting of the composite reliabilities and
effective (i.e., uncorrected) parameter estimates for all latent variables be-
come a standard practice in structural equation modeling.

In this connection, a question periodically faced by structural equation
modelers is what to do if composite reliability estimates are below desired
levels. The primary operational reason for a low composite reliability esti-
mate is substandard factor weights (i.e., ratio of error to loading may be
significant but relatively small) on some or all of a construct’s indicator
variables. Increasing the overall level of factor parameters will invariably
improve both estimates. There are two general possibilities for small factor
parameters: (a) construct multidimensionality or (b) random measurement
error. A way to potentially improve the magnitude of parameters is to break
a latent construct into two or more separate constructs. The preferred ap-
proach is based on a theoretical (i.., content) basis. A less desirable alterna-
tive would be to subject the defined indicators to an exploratory factor
analysis and respecify the model based on the results. Clearly, however, this
latter approach renders exploratory any subsequent modeling effort.

At the same time, if there are only one or two (or many) indicators
demonstrating a poor signal-to-noise (i.e., parameter to error) ratio, amodeler
may consider dropping only those questionable indicators. However, this
requires a sufficient number of measured variables to be done without a loss
of ability to ultimately model a construct as a latent variable. One advantage
of this approach, though, is that it can improve scale parsimony and provide
measurement guidance for future modelers.

Whereas the message of this article may be interpreted as questioning the
use of corrected parameter estimates, this has not been our intention. Rather,
our purpose has been (a) to link the growing structural equation modeling
literature to the correction for attenuation literature so as to inform applied
researchers of the nuances associated with correcting for measurement error
and (b) emphatically to remind researchers that serious attention must be paid
to the measurement components of all structural models. Models are only as
good as their measurement components.

Circumstances should dictate whether corrected parameter estimates
should be used in interpreting research results (Muchinsky, 1996). If the
empbhasis of a research effort is on developing and testing theoretical expla-
nations of behavior under ideal conditions, a state free of measurement error
then correcting for attenuation should legitimately be the focus of attention

Downloaded from epm.sagepub.com at LOUISIANA STATE UNIV on December 20, 2012


http://epm.sagepub.com/

BEDEIAN et al. 797

(Schmidt & Hunter, 1996). Conversely, if a researcher is not confident in the
quality of the measured variables (i.e., the measurement model), then uncor-
rected parameter estimates would more properly apply (Muchinsky, 1996).

‘We encourage both theory-based and applied researchers to devote greater
attention to issues associated with correcting for attenuation in structural
equation models, as well as to the meaning of the resulting outcomes for both
understanding real-world complexities and implementing real-world solu-
tions. Failing to do so may not only jeopardize the credibility of the re-
searchers involved but also result in unintended consequences for subsequent
applications and theory building.
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