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A B S T R A C T   

Previous research is inconclusive on when visual working memory (VWM) can be object-based or feature-based. 
Prior event-related potential (ERP) studies using change detection tasks have found that amplitudes of the 
N200—an ERP index of VWM comparison— are sensitive to changes in both relevant and irrelevant features, 
suggesting a bias toward object-based processing. To test whether VWM comparison processing can operate in a 
feature-based manner, we aimed to create circumstances that would support feature-based processing by: 1) 
using a strong task-relevance manipulation, and 2) repeating features within a display. Participants completed 
two blocks of a change detection task for four-item displays in which they were told to respond to color changes 
(task relevant) but not shape changes (task irrelevant). The first block contained only task-relevant changes to 
create a strong task-relevance manipulation. In the second block, both relevant and irrelevant changes were 
present. In both blocks, half of the arrays contained within-display feature repetitions (e.g. two items of the same 
color or shape). We found that during the second block, N200 amplitudes were sensitive to task-relevant but not 
irrelevant features regardless of repetition status, consistent with feature-based processing. However, analyses of 
behavioral data and N200 latencies suggested that object-based processing was occurring at some stages of VWM 
processing on task-irrelevant feature change trials. In particular, task-irrelevant changes may be processed after 
no task-relevant feature change is revealed. Overall, the results from the current study suggest that the VWM 
processing is flexible and can be either object- or feature-based.   

Efficient processing of visual information likely involves filtering out 
irrelevant information to focus on task-relevant information (Brady, 
Konkle, Oliva, & Alvarez, 2009; Cowan, 2001). Furthermore, to detect 
visual changes in the environment, perceptual representations must be 
compared to representations stored in visual working memory (VWM) 
(Simons, 2000; Simons & Rensink, 2005). The extent to which 
task-irrelevant information is filtered out during this comparison pro-
cess may be determined by how representations are processed for a 
given VWM task. For example, in a change detection task where par-
ticipants are instructed to detect changes in color but disregard changes 
in shape, it could be beneficial to use a feature-based strategy that in-
volves processing only color information. Feature-based processing 
models suggest that when VWM processing is biased toward individual 
features, VWM capacity is determined by the number of features 

presented (Bays, Wu, & Husain, 2011; Fougnie & Alvarez, 2011; Li, 
Qian, & Liang, 2018; Meyerhoff, Jardine, Stieff, Hegarty, & Franconeri, 
2021; Niklaus, Nobre, & van Ede, 2017; van Lamsweerde, Beck, & 
Johnson, 2016; Wheeler & Treisman, 2002; van Lamsweerde and Beck, 
2015). Moreover, task-irrelevant features can be filtered out because 
each feature can be processed individually. By contrast, object-based 
processing models propose that VWM capacity can be determined by 
the number of objects presented (Awh, Barton, & Vogel, 2007; Gao et al., 
2016; Gu et al., 2022; Luck & Vogel, 1997; Shen, Tang, Wu, Shui, & Gao, 
2013; Vogel, Woodman, & Luck, 2001; Yin et al., 2011, 2012). Under 
this view, individual features of an item are necessarily bound to that 
single item, and processing an item leads to processing all its features 
regardless of task relevance. 

Although the current state the literature does not strongly support a 
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purely object-based model or a purely feature-based model, it is not fully 
understood under which circumstances object- or feature-based pro-
cessing is prioritized or supported (see Schneegans & Bays, 2019 for 
review). In the current study, we examine event-related potentials 
(ERPs) during a change detection task to examine the potential for 
flexibility in processing level (feature or object) depending on the stage 
of processing. 

VWM processing involves several stages, and feature- or object-based 
processing biases could occur at different stages. To successfully detect a 
change to a visual stimulus, the stimulus’s original state (i.e., pre-change 
display) must be attended to and encoded into VWM. This representa-
tion must then be maintained in VWM until the post-change information 
is encountered. Next, a comparison process must occur in which the pre- 
change representation is compared to the post-change representation. 
Finally, a decision/response process occurs during which, if the signal 
created by the comparison process is higher than a threshold, a “change 
response” is generated, and if not, a “no change response” is generated 
(Beck, Peterson, & Angelone, 2007; Hyun, Woodman, Vogel, Holling-
worth, & Luck, 2009; Mitroff, Simons, & Levin, 2004; Simons, 2000; 
Simons & Rensink, 2005; Wilken & Ma, 2004). It is possible that the 
encoding, maintenance, or comparison stages in processing can be either 
feature- or object-based. 

Evidence regarding when feature-based VWM processing can be 
supported comes from studies investigating how feature repetition 
within a display can be used to improve VWM performance. Specifically, 
change detection improvements are found when task-relevant features 
are shared by multiple items within a single display (Meyerhoff et al., 
2021; van Lamsweerde et al., 2016; van Lamsweerde & Beck, 2015). 
This suggests that, under some circumstances, VWM processing can 
operate in a feature-based manner (Meyerhoff et al., 2021; van Lams-
weerde et al., 2016; van Lamsweerde & Beck, 2015). For example, if 
presented with a display containing a blue square, a blue circle, a red 
triangle, and a green star and required to detect a color change, it would 
be beneficial to group processing of the two blue features together at the 
cost of processing irrelevant features such as shape. This grouping can be 
primarily bottom-up if the gestalt grouping cues are strong (e.g., Diaz 
et al., 2021), but top-down influences (stimuli with a prior history of 
grouping or explicit instructions to group) can also lead to stimuli being 
grouped based on features (Balaban and Luria, 2016; Rabbitt et al., 
2017). It has not yet been determined which stage of VWM processing 
benefits from grouped processing of repeated task-relevant features. 
Therefore, even if grouping does not occur initially at encoding, a 
benefit of feature repetition for task-relevant features can potentially 
occur at the maintenance and/or comparison stages. 

Findings from other change detection studies have shown evidence 
for prioritization of object-based processing. For example, Yin et al. 
(2012) examined task-irrelevant feature processing during a change 
detection task involving colored shapes. Participants were first pre-
sented with displays of three colored shapes for 200 ms in a pre-change 
array (e.g., blue circle, red square, green star) and told to remember and 
detect only shape changes and to ignore color changes. After a 1000 ms 
delay, a post-change display was presented with one of four change 
types: task-relevant (color) change, task-irrelevant (shape) change, both 
shape and color change, or no-change. Change detection response times 
(RTs) were longer for task-irrelevant change trials (Yin et al., 2012). In 
addition, a previous study reported that change detection accuracy was 
impaired when both color and shape changed in the same trial (Yin 
et al., 2011). The authors interpreted the findings from these studies as 
evidence that both task-relevant and task-irrelevant features were pro-
cessed in VWM. 

To gain insight into which stage(s) of processing are biased toward 
object- or feature-based processing, Yin et al. (2011, 2012) also analyzed 
event-related potentials (ERPs) elicited during the four types of 
post-change displays. In both studies, it was found that amplitudes of the 
anterior N200 component were equivalent among trials with 
task-relevant changes, task-irrelevant changes, and both-changes, and 

all three change types elicited larger (more negative) N200 amplitudes 
than no-change trials. The anterior N200 is an ERP component that has 
been linked to the detection of mismatching information in VWM 
comparison (e.g., the comparison of an incoming stimulus to an active 
working memory representation (for review, see Folstein and Van Pet-
ten, 2008; see also Mao & Wang, 2008; Wang et al., 2004; Zhang et al., 
2003). Based on these results, Yin et al. (2011, 2012) concluded that 
task-irrelevant features are automatically processed during the com-
parison stage of VWM (Yin et al., 2011, 2012), which is consistent with 
object-based processing accounts. 

In addition to the N200, Yin et al. (2012) found differences in a late 
positive component (LPC or P300),2 which was also greater for change 
than no-change trials with no effect of change task-relevance. The LPC is 
believed to reflect the summation of multiple subcomponents, each with 
different properties and eliciting conditions. In the context of change 
detection, differences between change- and no-change trials may largely 
reflect the P3b subcomponent, which is elicited by target stimuli in a 
variety of tasks that involve signal detection (Luck & Kappenman, 
2011). Traditionally, the P3b was believed to reflect processes involved 
in stimulus evaluation, such as attention to the contents of working 
memory (Fabiani, Karis, & Donchin, 1986; Polich, 2007), working 
memory load or effort (Gunseli et al., 2014) or context updating (Don-
chin, 1981; Donchin & Coles, 1988). More recent evidence suggests that 
the P3b may reflect response-related processes, such as reactivating the 
link between a stimulus and its corresponding button press (Verleger 
et al., 2017; Verleger, 2020). Regardless of the precise interpretation of 
these effects, the fact that the LPC was equivalent for irrelevant and 
irrelevant changes in Yin et al. (2012) suggests that object-based pro-
cessing persisted beyond the comparison stage. 

1. The current study 

In summary, evidence from previous research is mixed as to when 
processing in VWM is biased toward feature-based (Bays, Wu, & Husain, 
2011; Fougnie & Alvarez, 2011; Li, Qian, & Liang, 2018; Meyerhoff, 
Jardine, Stieff, Hegarty, & Franconeri, 2021; Niklaus, Nobre, & van Ede, 
2017; van Lamsweerde, Beck, & Johnson, 2016; van Lamsweerde and 
Beck, 2015; Wang et al., 2016, 2017;Wheeler & Treisman, 2002) or 
object-based processing (Awh, Barton, & Vogel, 2007; Gao et al., 2016; 
Luck & Vogel, 1997; Shen, Tang, Wu, Shui, & Gao, 2013; Vogel, 
Woodman, & Luck, 2001; Yin et al., 2011, 2012), suggesting that pro-
cessing can be flexible. Understanding when and how individuals 
engage in object- or feature-based processing is essential to encourage 
efficient information processing. In the current study, we examine ways 
in which stages of VWM processing can be dynamically tailored to be 
either feature- or object-based to meet the needs of specific stimulus 
characteristics and task demands (Schneegans & Bays, 2019; see also 
van Lamsweerde et al., 2016; Wang et al., 2016; for behavioral evidence 
of such flexibility). We also examined whether, despite previous findings 
consistent with object-based processing (Yin et al., 2011, 2012), VWM 
comparison can be feature-based under appropriate circumstances. 

We modeled the current study after Yin et al. (2011, 2012) but made 
two changes to promote feature- rather than object-based processing. 
First, we included change detection trials with within-display feature 
repetition. As previously mentioned, feature repetition is one factor that 
may encourage feature-based VWM processing. When multiple items 
share a feature, representations can be grouped by perceptual connec-
tion, such as color and shape at the same location/object (e.g., blue 
square; Luck & Vogel, 1997) or by feature similarity, such as similar 
colors (e.g., two blue shapes; Peterson & Berryhill, 2013). This 
“grouping” can bias VWM processing toward task-relevant features by 

2 Here we use the term LPC rather than P300 for consistency with Yin (2012) 
as well as to explicitly acknowledge that scalp activity associated with this 
measure reflects multiple subcomponents (e.g, Barry et al., 2020). 

S.M. Saltzmann et al.                                                                                                                                                                                                                          



Biological Psychology 178 (2023) 108528

3

allowing attention to be spread across similar items, thereby maximizing 
VWM processing efficiency during the encoding and attention process-
ing stages (Bateman, Ngiam, & Birney, 2018; Brady, Konkle, Oliva, & 
Alvarez, 2009; Erlikhman, Keane, Mettler, Horowitz, & Kellman, 2013; 
Kasai, Moriya, & Hirano, 2011; Meyerhoff, Jardine, Stieff, Hegarty, & 
Franconeri, 2021; Niklaus, Nobre, & van Ede, 2017; van Lamsweerde, 
Beck, & Johnson, 2016; Wannig, Stanisor, & Roelfsema, 2011; van 
Lamsweerde and Beck, 2015). To assess maintenance capacity, change 
detection accuracy was transformed into a VWM capacity estimate using 
Cowan’s K formula. Increased capacity estimates on repeated-feature 
trials containing a task-relevant change would suggest that VWM can 
be biased toward feature-based processing. Feature repetition could also 
bias later stages of working memory processing, such as the comparison 
stage. It is likely more efficient to compare the post-change array to a 
feature in VWM only once (for a single “grouped” representation) rather 
than multiple times (for each object). Therefore, improvements in 
change detection performance for task-relevant trials due to feature 
repetition would be evidence that such repetition can serve to bias VWM 
toward feature-based processing. 

Our second fundamental design change involved strengthening the 
task-relevance manipulation by including an initial block of trials where 
only the task-relevant feature changed, and thus there were no task- 
irrelevant change trials. We reasoned that automatic processing of 
both task-relevant and task-irrelevant information (a hallmark of object- 
based processing) may be more likely to occur in situations in which the 
task-irrelevance manipulation is relatively weak. Indeed, this seems to 
have been the case in Yin et al. (2011, 2012). Although participants in 
these studies were told only to detect one type of change (e.g., color 
changes in Yin et al., 2011 and shape changes in Yin et al., 2012), all 
types of change trials (e.g., color and shape changes) were included 
throughout these studies, potentially limiting participants’ ability to 
focus only on the features meant to be task relevant. Developing a strong 
manipulation of task relevance may be integral to creating a situation 
where VWM processing is feature-based. 

As in Yin et al. (2011, 2012), in addition to comparing accuracy and 
reaction times across trial types, we also examined ERPs elicited by the 
post-change displays to isolate effects on the comparison stage as 
indexed by frontal N200 amplitudes. A finding that both task-relevant 
and task-irrelevant change trials elicit a more negative N200 ampli-
tude than no-change trials would suggest that object-based processing 
occurred during the comparison stage of VWM despite our attempts to 
encourage feature-based processing. By contrast, feature-based VWM 
processing will be evidenced if task-irrelevant changes elicit a minimal 
N200, similar to the no-change trials. The latter pattern of results, taken 
together with those of Yin et al. (2011, 2012), would not only suggest 
that VWM processing is flexible at the comparison stage, but would 
point to two possible moderators of this flexibility that could be targeted 
in future research. 

2. Methods 

2.1. Participants 

Twenty-six psychology students (5 male and 21 female) from Loui-
siana State University participated in the current study. The average age 
of participants was 20 years (range = 18 – 23). Four participants’ data 
were removed due to not completing the experiment, and one partici-
pant’s data was removed due to excessive EEG artifacts. Thus, twenty- 
one participants were included in the final analysis. Based on an 
initial power analysis from a behavioral pilot (change type x feature 
repetition, np

2 = .47), 16 participants were required to achieve a power 
of .80. More participants were recruited than required to account for any 
potential data loss due to incomplete experiments or excessive EEG ar-
tifacts. No data were analyzed prior to the completion of data collection. 
All participants had normal or corrected-to-normal vision and normal 
color vision. All participants received either course credit or $10/hr for 

participating in this experiment. 

2.2. Design 

The study employed a 2 (feature repetition: repeated-feature, 
unique-feature) x 4 (change type: task-relevant, task-irrelevant, both- 
change, no-change) repeated measures design. 

2.3. Stimuli and apparatus 

The experiment was programmed in Experiment Builder (SR 
Research), and ERPs were recorded using a BioSemi ActiveTwo system. 

Stimuli consisted of four-item displays, with each display containing 
a unique combination of one of 12 abstract shapes and one of eight 
colors (Fiser and Aslin, 2001; see Figs. 1a and 1b). No two items were 
identical on a given display. Items in the pre-and post-change displays 
were presented randomly in one of four quadrants, each 2.16◦ away 
from the center of the screen. Each item had a horizontal visual angle of 
2.12◦ and a vertical visual angle of 2.09◦. For no-change trials, all four 
color-shape combinations remained the same from pre- to post-change 
displays. For each of the other three change types, one item’s shape 
and/or color changed from the pre- to post-change display. For 
task-relevant change (color change) trials, the color of one item 
changed, but all other features remained the same. Task-irrelevant 
change (shape change) trials included one shape change, while all other 
features remained the same. Finally, the same item would change both 
color and shape during both-change trials. Examples of these trial types 
are shown in Fig. 1a. 

The location of the changed item was randomly determined between 
one of the four quadrants. On average, 94 change trials contained a 
change from the first quadrant, 86 changes were made from the second, 
96 in the third quadrant, and 83 from the fourth quadrant. Participants 
were also presented with an equal number of repeated-feature and 
unique-feature trials, presented in a random order. For repeated-feature 
trials, two different shapes shared the same color, two different colors 
shared the same shape, and one item had a unique color and shape (see 
Fig. 1b). However, there were never two identical items (same color and 
same shape for both items). For example, a pre-change display could 
include a blue circle, a blue square, a green square, and a yellow tri-
angle. The locations of the stimuli with repeated features were ran-
domized on each trial, with an equal probability of the repeated stimuli 
appearing in any one of the four quadrants. For unique-feature trials, 
each item had a unique shape and a unique color. 

2.4. Procedure 

The methodology for the current study was adapted from Yin et al. 
(2012) with the addition of block 1 containing only task-relevant change 
trials and the addition of displays with repeated features. Participants 
completed 720 change detection trials, divided into two blocks of 240 
and 480 trials, respectively. In both blocks, participants were instructed 
to detect a change in color to one of the four stimuli. Participants were 
never explicitly told that shape may change, only to detect a color 
change. The purpose of block 1 was to strengthen the task-relevance 
manipulation. Thus, block 1 contained 120 task-relevant changes 
(color change) and 120 no-change trials, but no task-irrelevant or 
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both-change trials. In block 2, by contrast, an equal number of 
task-relevant, task-irrelevant, no-change, and both-change trials were 
included. An example trial is shown in Fig. 1b. A fixation cross was 
presented in the center of the screen in between trials and each trial was 
initiated with a key response by the participant. After a 200 – 300 ms 

delay, participants were presented with one four-item display for 

Fig. 1. A) Example of each possible condition during change detection. The changed item was chosen randomly from the four pre-change items. B) Example of one 
experimental trial. 
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500 ms (pre-change display), followed by a fixation cross for 900 – 
1100 ms.3 The post-change display followed the blank screen, which 
remained on the screen until the response (see Fig. 1). Participants were 
instructed to respond “change” when the color changed (task-relevant 
change and both-change trials) and “no change” when the color did not 
change (task-irrelevant change and no-change trials). For both blocks, 
half of the displays within each trial type contained a within-display 
feature repetition (repetition trials), and half did not (unique trials). 
Breaks were included throughout the experiment after every 120 trials 
(two breaks during block 1; four breaks during block 2). 

2.5. Electrophysiological recordings 

Continuous EEG was recorded throughout the experiment from 32 
Ag/AgCL electrodes at locations corresponding to the 10–20 system. 
Additional electrodes were placed on the right and left mastoids, below 
the center of the eye, and on each outer canthus. EEG data were recorded 
at a sampling rate of 512 Hz with a bandpass filter of 0.16–50 Hz. Before 
statistical analyses, an additional bandpass filter with half-amplitude 
cutoffs of 0.1–30 Hz was applied using a Butterworth impulse 
response function and a 12 dB/octave roll-off. ERPs were time-locked to 
the onset of the post-change array. Data were online referenced to the 
BioSemi CMS/DRL electrodes and were referenced again offline to the 
average of the right and left mastoids. 

Epochs were 1100 ms long, time-locked to the onset of the post- 
change displays, with a time window of − 200 – 900 ms. The mean 
amplitude of the 200 ms prior to stimulus onset (time point 0) was used 
for baseline correction. To detect ocular artifacts, bipolar channels were 
created to represent the difference between: 1) the left vertical EOG and 
channel Fp1; 2) the right vertical EOG and channel Fp2; and 3) the left 
and right horizontal EOG channels. To screen for trials with horizontal 
eye movements, blinks, or excessive muscle movements, we performed 
an initial round of artifact detection using a simple rejection threshold of 
+ /- 100 μV on any scalp channels and a step-like artifact threshold of 
+ /- 60 μV on the bipolar vertical or bipolar horizontal eye channels. 
These thresholds were then adjusted for individual participants as 
needed based on visual inspection by a researcher blind to the assign-
ment of trials to conditions (see Luck, 2014, for justification of the use of 
the individualized thresholds). For datasets in which < 25% of trials 
contained artifacts (n = 20), all trials with artifacts were excluded from 
the analysis. Data from the remaining participant were subject to in-
dependent components analysis (ICA)4 using the runica algorithm 
implemented in EEGLAB (Bell & Sejnowski, 1995; Lee, Girolami, & 
Sejnowski, 1999; Amari et al., 1997). Two eyeblink components were 
manually identified and removed from the EEG for this participant. After 
blink component removal, we did an additional screening of the data for 
trials containing artifacts due to saccades, muscle activity, or residual 
eyeblinks. An average of 12.5% of trials (range = 2.9–22.5%) were 
excluded from each participant. The mean number of trials included in 
the analysis for each condition ranged from 38 to 45 (min = 19, max =
57). Only correct trials were included in ERP analyses. 

2.6. Electrophysiological analysis strategy: planned 

Prior studies vary in the time windows chosen to analyze the N200 
and LPC components, making it difficult to select specific analysis 
windows a priori (see Luck & Gaspelin, 2017, for further discussion of 
this issue). Thus, we took a data-driven approach to selecting our 
analysis windows by first conducting a mass univariate analysis with 
cluster-based permutation tests, which identifies broad spatiotemporal 
clusters that differ according to the conditions of interest while holding 
the family-wise alpha rate at 0.05. This cluster-based mass univariate 
approach has the advantage of being data-driven and less constrained by 
a priori selections regarding analysis windows and electrode sites, while 
still maintaining statistical power to detect differences (Fields and 
Kuperberg, 2020). We used the Mass Univariate ERP Toolbox (Groppe 
et al., 2011) and Factorial Mass Univariate ERP Toolbox (Fields, 2017) 
to conduct a repeated-measures ANOVA on ERPs elicited by the 
post-change arrays with the factors of change type (task-relevant, 
task-irrelevant, both-change, no-change) and feature repetition (repea-
ted-feature, unique-feature) including all 32 electrode channels and all 
time windows from 0 to 900 ms. Electrodes within 5.45 cm of each other 
were considered spatial neighbors, and adjacent time points were 
considered temporal neighbors. Following the cluster-based permuta-
tion approach, neighboring F-statistics with uncorrected p-values ≤ 0.05 
were grouped into clusters. The F-statistics within each cluster were 
summed together to calculate the cluster mass. To assign a p-value to 
each cluster, the cluster masses of the data are compared to an estimate 
of the null distribution based on 10,000 within-subject permutations. 
These analyses were supplemented with traditional 
spatiotemporal-based analyses of ERP amplitudes over combinations of 
electrode clusters and time windows that emerged as significant in the 
mass univariate analysis. 

2.7. Electrophysiological analysis strategy: exploratory 

As described below, visual inspection of the grand average wave-
forms suggested possible latency differences across conditions in the 
N200 component, with the irrelevant-change condition peaking close to 
the end of the 300–400 ms analysis window. Thus, we supplemented our 
planned analyses of mean amplitudes with exploratory analyses of peak 
amplitudes over the same frontal cluster from 300 to 450 ms. Peak 
amplitudes were measured from difference waves formed by subtracting 
the ERPs for the no-change condition from each of the three other 
condition and using ERPLAB functions to find a local negative peak over 
3 consecutive points within the 300–450 ms time window (see Luck, 
2014, for discussions of why the use of difference waves is preferable for 
measuring peak amplitudes). If no local peak was found, the absolute 
negative peak over this window was used. Although peak amplitude 
tends to be a less reliable measure than mean amplitude, it is better 
suited for comparing amplitudes among conditions with different la-
tencies. Because the N200 is a negative-going component, we defined 
peak amplitude as the largest negative local peak over at least three time 
points. 

3. Behavioral results 

For block 1, a 2 × 2 repeated measure analysis of variance (ANOVA) 
was conducted with change type (task-relevant, no-change) and feature 
repetition (repeated-features, unique-features) as within-subject factors. 
For block 2, separate 2 × 2 repeated measures ANOVAs were conducted 
for trials where the correct response was “change” (task-relevant and 
both-change) and for trials where the correct response was “no change” 
(task-irrelevant and no-change) with change type and feature repetition 
as within-subject factors. Paired samples t-tests were used to follow up 
on significant main effects and interactions. Specifically, we were 
interested in the difference between levels of feature repetition across 
change types. 

3 Note that this is a shorter pre-post retention interval than the 4000 ms in-
terval that was used in Yin et al. (2011). We chose this retention interval 
because it is more typical of change detection studies, including studies in 
which the N200 is measured (Luck & Vogel, 1997; van Lamsweerde et al., 2016; 
Vogel et al., 2001; Yin et al., 2012). Importantly, Yin et al. (2012) replicated the 
key ERP results of Yin et al. (2011) using a 1000 ms retention interval, so it is 
unlikely that differences between our findings and those of Yin et al. (2011, 
2012) are related to our retention interval.  

4 Given that ICA can never perfectly isolate artifactual from neural sources 
and that the N200 component is maximal over frontal electrode sites close to 
the eyes, we chose to be sparing with our use of ICA to minimize the risk of data 
distortion. We re-ran all analyses using a rejection-only version of the dataset 
for the one participant who received ICA and found the results to be unchanged. 
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3.1. Change detection accuracy 

Change detection accuracy was calculated as the proportion of trials 
that received a correct response. For task-relevant change and both- 
change trials, the correct response was “change,” and for task-irrelevant 
change and no-change trials, the correct response was “no change.” 
Therefore, “change” responses made to task-irrelevant and no-change 
trials were classified as “false alarms”, whereas “no change” responses 
to these trials were classified as “correct rejections”. “Change” responses 
made to task-relevant and both-change trials were classified as “hits”, 
whereas “no change” responses to these trials were classified as “mis-
ses”. Proportions of hits and false alarms are displayed in Fig. 2. 

Block 1. 
Block 1 only included task-relevant and no-change trials. A main 

effect of change type emerged, by which accuracy was higher for no- 
change trials (M = 0.92, SD = 0.08) compared to task-relevant change 
trials (M = 0.82, SD = 0.14), F(1, 20) = 11.70, p = .003, ηp

2 = .37. There 
was also a main effect of feature repetition, with higher accuracy for 
repeated-feature trials (M = 0.90, SD = 0.09) compared to unique- 
feature trials (M = 0.84, SD = 0.15), F(1, 20) = 30.06, p < .001, ηp

2 

= .60. Importantly, an interaction between change type and feature 
repetition was observed, F(1, 20) = 14.40, p = .001, ηp

2 = .42. Paired 
samples t-tests were conducted to examine the difference between 
repeated and unique trials for task-relevant and no-change trials sepa-
rately. For task-relevant change trials, performance for repeated-feature 
trials (M = 0.87, SD = 0.09) was significantly higher than for unique- 
feature trials (M = 0.77, SD = 0.15), t(20) = 5.98, p < .001, d = 1.30. 
However, for no-change trials, there was no difference in false alarm rate 
between repeated-feature (M = 0.07, SD = 0.07) and unique-feature 
trials (M = 0.08, SD = 0.09), t(20) = 0.79, p = .44, d = 0.17. This non- 
significant effect may be due to ceiling performance for no-change trials, 
for which accuracy was > 90% (see Fig. 2). The accuracy results from 
block 1 replicate previous research (van Lamsweerde et al., 2016; van 
Lamsweerde & Beck, 2015) by demonstrating that feature repetition 
does improve performance. 

Block 2. 
The 2 × 2 ANOVA exploring false alarms for task-irrelevant and no- 

change trials revealed a main effect of change type, such that the false 
alarm rate was lower for no-change trials (M = 0.09, SD = 0.08) 
compared to task-irrelevant trials (M = 0.18, SD = 0.13), F(1, 20) 
= 25.50, p < .001, ηp

2 = .56. No main effect of feature repetition was 
revealed, with no difference in false alarm rate between repeated- 
feature trials (M = 0.13, SD = 0.11) and unique-feature trials (M = 0.14, 
SD = 0.10), F(1, 20) = 1.53, p = .23, ηp

2 = .07. Finally, the interaction 

between change type and feature repetition was not significant, F(1, 20) 
= 0.63, p = .44, ηp

2 = .03. Overall, these results suggest that task- 
irrelevant change trials led to significantly more false alarms (18%) 
compared to no-change trials (9%), suggesting that at least some amount 
of object-based processing occurred. 

The 2 × 2 ANOVA comparing hit rates for trials for which the correct 
response was “change” (task-relevant and both-change trials) revealed a 
main effect of change type, with a significantly higher proportion of hits 
on both-change trials (M = 0.86, SD = 0.09) compared to task-relevant 
change trials (M = 0.82, SD = 0.12), F(1, 20) = 10.07, p < .05, ηp

2 = .33. 
There was also a significant main effect of feature repetition, with 
repeated-feature trials (M = 0.89, SD = 0.08) leading to a higher hit rate 
than unique-feature trials (M = 0.79, SD = 0.08), F(1, 20) = 32.01, 
p < .001, ηp

2 = .62. Finally, the interaction between change type and 
feature repetition was significant, F(1, 20) = 14.86, p < .001, ηp

2 = .43. 
To explore this interaction, paired samples t-tests were conducted to 
compare the effect of change type for repeated and unique trials. If task- 
irrelevant features are processed, we would expect both-change trials to 
differ from relevant-change trials. For repeated-feature trials, the t-test 
revealed no significant difference between task-relevant change trials 
(M = 0.89, SD = 0.09) and both-change trials (M = 0.89, SD = 0.07), t 
(20) = 0.27, p = .79, d = 0.06. However, for unique-feature trials, the 
hit rate was significantly higher for both-change trials (M = 0.83, SD =
0.11) compared to task-relevant change trials (M = 0.76, SD = 0.16), t 
(20) = 3.79, p = .001, d = 0.83. These results suggest that when both 
task-relevant and task- irrelevant features are present, irrelevant fea-
tures are more likely to be processed on unique- rather than repeated- 
feature trials, consistent with the notion that feature repetition can 
encourage feature-based processing. 

4. Change detection accuracy: Cowan’s K 

Feature-repetition may improve efficiency of working memory 
maintenance by means of “grouping” task-relevant features. To assess 
VWM capacity, change detection accuracy was converted into a K esti-
mate using Cowan’s (2001) formula, K = N (H – FA). Cowan’s K was 
analyzed only for trials in Block 2 that contained a task-relevant feature 
change. Four measures were created to assess capacity estimates 
(Relevant Hits – No-Change FAs; Both-Change Hits – Irrelevant Change 
FAs). To measure the ability to discriminate color-change from 
no-change trials, the difference between task-relevant change trial hits 
and no-change trial false alarms was calculated for repeated- and 
unique-feature trials separately. Next, the difference between task-irre-
levant change and both-change trials was calculated to measure how the 

Fig. 2. False alarms and hits for trials in which 
a “change” response was made, separated by 
feature repetition and change type. No-change 
and task-irrelevant change trials display false 
alarms (1 – correct rejections). Task-relevant 
and both-change trials display hit rate. In 
Block 1, there was an effect of feature repeti-
tion. In Block 2, more false alarms were made 
on task-irrelevant trials than no-change trials. 
Change type did not affect the hit rate when 
features were repeated. Both-change trials had 
a higher hit rate than task-relevant change trials 
when features were unique. Error bars denote 
standard error.   
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presence of a task-irrelevant feature change impacts VWM capacity. We 
corrected for instances in which no false alarms were made by adding 
0.5 to each hit and false alarm rate and then dividing the result by N + 1, 
where N is the number of trials (Snodgrass & Corwin, 1988). All hits and 
false alarm measures were calculated separately for repeated- and 
unique-feature trials. 

There was a main effect of change type, with a higher estimated 
VWM capacity for task-relevant change trials (M = 2.86, SD = 0.66) 
compared to both-change trials (M = 2.66, SD = 0.65), F(1, 20) = 6.53, 
p = .02, ηp

2 = .25. Additionally, there was a main effect of feature 
repetition, with repeated-feature trials (M = 2.95, SD = 0.63) leading to 
higher predicted VWM capacity compared to unique-feature trials (M =
2.57, SD = 0.68), F(1, 20) = 28.23, p < .001, ηp

2 = .59. The interaction 
between feature repetition and change type was not significant, F(1, 20) 
= 3.58, p = .07, ηp

2 = .15. These results suggest that when feature-based 
processing is encouraged with feature repetition, participants are able to 
store more in VWM (Fig. 3). 

4.1. Change detection response times 

Response times (RTs) were examined for correct change detection 
trials only (Fig. 4). Block 1. 

In block 1, there was no main effect of change type, F(1, 20) = 1.61, 
p = .22, ηp

2 = .07. The main effect of feature repetition was also not 
significant, F(1, 20) = 0.40, p = .54 ηp

2 = .02, nor was the interaction 
between change type and feature repetition F(1, 20) = 0.26, p = .61, ηp

2 

= .01. Thus, there was no evidence that feature repetition impacts RTs. 
Block 2. 
For no-change and task-irrelevant change trials (correct response is 

“no change”), there was a main effect of change type, with task-irrele-
vant change trials (M = 1044.46 ms, SD = 337.38 ms) leading to 
significantly longer RTs than no-change trials (M = 892.11 ms, SD =
236.25 ms), F(1, 20) = 57.40, p < .001, ηp

2 = .74. No main effect of 
feature repetition was revealed, with similar RTs for both repeated- 
feature trials (M = 965.85 ms, SD = 291.58 ms) and unique-feature 
trials (M = 970.73 ms, SD = 309.06 ms), F(1, 20) = 0.15, p = .70, ηp

2 

= .01. Finally, the interaction between change type and feature repeti-
tion was not significant, F(1, 20) = 0.14, p = .71, ηp

2 = .01. The main 
effect of change type suggests that the task-irrelevant feature change 
impacted the correct rejection response, suggesting that in the absence 
of a task-relevant feature change, the task-irrelevant feature change was 
processed to some extent. 

For task-relevant and both-change trials (correct response is 
“change”), there was no main effect of change type, with similar change 
detection RTs for both task-relevant change trials (M = 908.02 ms, SD =

242.40 ms) and both-change trials (M = 913.14 ms, SD = 246.49 ms), F 
(1, 20) = 0.23, p = .64, ηp

2 = .01. The main effect of feature repetition 
was also non-significant, with similar RTs between repeated-feature 
trials (M = 904.96 ms, SD = 233.11 ms) and unique-feature trials (M =
916.20 ms, SD = 257.34 ms), F(1, 20) = 0.59, p = .45, ηp

2 = .03. Finally, 
the interaction between change type and feature repetition was not 
significant, F(1, 20) = 0.82, p = .38, ηp

2 = .04. Overall, these results 
suggest that RTs are insensitive to the presence of a task-irrelevant 
feature change on trials that also contained a task-relevant feature 
change. 

5. ERP results 

5.1. Planned analyses 

5.1.1. Mass univariate analyses 
For the cluster-based mass permutation analysis, no clusters emerged 

with a significant main effect of feature repetition (ps > 0.052) nor a 
change type x feature repetition interaction (ps > 0.67). However, a 
significant main effect of change type emerged in a single, broadly 
distributed cluster from 257 to 688 ms (p < .001). The cluster’s tem-
poral peak was at 432 ms (temporal mass = 468 ms), and the spatial 
peak was at electrode P4 (spatial mass = P03). As shown in Fig. 4, 
however, this cluster appeared to have two distinct subregions: one that 
spanned from approximately 300 to 400 ms over frontal electrodes, 
consistent with the timing and scalp distribution of the N200 compo-
nent, and a second temporally overlapping subregion with a parieto- 
occipital focus from approximately 300 to 600 ms, consistent with the 
LPC. For this reason, we chose to follow up on the mass univariate results 
by conducting spatiotemporal averaging-based analyses for 1) the 300 – 
400 ms time window (N200) averaged over a cluster of frontal elec-
trodes (Fp1, Af3, F7, F3, Fz, F4, F8, Af4, Fp2); and 2) the 300 – 600 ms 
time window (LPC) averaged over a cluster of parietal and occipital 
electrodes (P7, P3, Pz, Po3, O1, Oz, O2, Po4, P4, P8). These analyses 
consisted of 4 (change type: task-relevant, task-irrelevant, both-change, 
no-change) x 2 (feature repetition: repeated-feature, unique-feature) 
repeated measures ANOVAs over the mean amplitude of each cluster 
over each time window. Although no main effects or interactions 
involving repetition were found in the mass univariate analysis, we 
included repetition as a factor in this analysis in case such effects were 
present but not detected due to the conservative nature of the mass 
univariate analysis. The Greenhouse-Geisser correction for non- 
sphericity was applied to effects that involved more than two levels 
(main effects of change type and change-type x repetition interactions). 

Spatiotemporal Average-Based Analysis: 300 – 400 ms (N200). 
Regarding the frontal N200 analyses, the main effect of feature repeti-
tion was non-significant F(1, 20) = 1.15, p = .30, ηp

2 = .05, with no 
significant N200 amplitude differences between repeated-feature (M =
− 0.74, SD = 3.88) and unique-feature trials (M = − 1.14, SD = 3.19). 
However, a significant main effect of change type emerged, F(2.85, 
57.01) = 5.80, p = .002, ηp

2 = .22 (see  Figs. 5, 7, & 8). Follow-up paired 
t-tests revealed that N200 amplitudes were larger (more negative) for 
both task-relevant change (M = − 1.71, SD = 3.62) and both-change 
trials (M = − 1.50, SD = 3.85), relative to no-change trials (M = − 0.003, 
SD = 3.63); ts = 3.38 and 3.21; ps = 0.003 and .004, respectively, 
ds = 0.74 and 0.70. Additionally, both task-relevant change and both- 
change trials produced larger N200 amplitudes compared to irrelevant- 
change trials (M = − 0.55, SD = 3.68), ts = 2.52 and 2.25, ps = 0.02 and 
.04, respectively, ds = 0.55 and 0.49. N200 amplitudes did not differ 
between task-irrelevant change and no-change trials, t(20) = 1.04, 
p = .31, d = 0.23, nor between task-relevant change and both-change 
trials, t(20) = 0.47, p = .64, d = 0.10. The interaction between repeti-
tion and change type was not significant, F(2.81, 56.28) = 1.74, p = .17, 
np

2 = .08. In summary, the N200 results suggest that, at least during the 
VWM comparison process, participants successfully filtered out the task- 
irrelevant dimension regardless of feature repetition or response type 

Fig. 3. Estimated VWM capacity, Cowan’s K, for trials containing a task- 
relevant change separated by feature repetition. No-change trial false alarms 
were subtracted from task-relevant change trial hits. Task-irrelevant change 
trial false alarms were subtracted from both-change trial hits. The main effect of 
change type and feature repetition was significant. Error bars denote stan-
dard error. 
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(“change”/”no change”). These results suggest that VWM processing can 
be feature-based during the comparison stage. 

Spatiotemporal Average-Based Analysis: 300 – 600 ms (LPC). 
The results of the LPC analyses closely mirror those of the N200. As with 
the N200, no main effect of feature repetition was found on LPC am-
plitudes (M = 9.19, SD = 3.02; M = 8.74, SD = 3.19 for repetition and 
unique trials, respectively), F(1, 20) = 2.04, p = .17, ηp

2 = .09. However, 
a significant main effect of change type was present, F(2.30, 46.06) 
= 15.14, p <.001, ηp

2 = 0.43 (see  Fig. 6, 7, & 8). Follow-up paired t-tests 
revealed that, relative to no-change trials (M = 8.12, SD = 2.50), LPC 
amplitudes were significantly larger for both task-relevant change (M =
9.87, SD = 3.60), t(20) = 3.42, p = .003, d = 0.75, and both-change 
trials, (M = 10.17, SD = 3.90), t(20) = 3.81, p = .001, d = .83. Task- 
relevant change trials elicited significantly larger amplitudes compared 
to task-irrelevant change trials (M = 7.71, SD = 2.91), t(20) = 5.74, 
p < 0.001, d = 1.25. Finally, the difference in LPC amplitudes between 
both-change trials and task-relevant change trials was not significant, t 

(20) = 0.90, p = .38, d = 0.20, nor was the difference between no- 
change trials and task-irrelevant change trials, t(20) = 0.96, p = .35, 
d = 0.21. The interaction between repetition and change type was not 
significant, F(2.44, 48.75) = 0.83, p = .47, np

2 = .04. Overall, these re-
sults are consistent with feature-based processing. 

5.2. Exploratory analyses 

Overall, the results of our primary analyses suggest that the type of 
comparison processing attributed to the N200 was absent for task- 
irrelevant features. However, visual inspection of Fig. 7, as well as of 
the difference waves formed by subtracting ERPs for no-change trials 
from those of each of the other conditions (Fig. 8) suggest another 
possibility: namely, that N200 potentials evoked by task-irrelevant 
change trials occurred later than those evoked by the other two 
change conditions, and thus were less well-captured by our analysis 
window. 

Fig. 4. Response times for correct change detection trials separated by feature repetition and change type. Task-irrelevant change trials produced significantly longer 
RTs than all other change trial types. Error bars denote standard error. 

Fig. 5. Raster diagram representing the results 
of the cluster-based permutation test, which 
included all electrodes and all time points be-
tween 0 and 900 ms. Electrode groupings along 
the y-axis correspond to left hemisphere (top 
group), midline (middle group) and right 
hemisphere electrodes (bottom group). Within 
each group, electrodes are listed in descending 
order of anteriority. Colored rectangles indicate 
electrodes and time points that were included in 
the cluster with a significant main effect of 
change type. No clusters showed a significant 
main effect of feature repetition or a change 
type x feature repetition interaction.   
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To further explore this possibility, we conducted a series of one- 
sample t-tests with Bonferroni-corrected p-values to determine 
whether the peak amplitude of each difference wave over the frontal 
electrode cluster between 300 and 450 ms was reliably different from 
zero (e.g., was the peak N200 amplitude generated by each change type 
reliably different from that generated by no-change). Using a Bonferroni 
corrected alpha of .017, all three comparisons were significant. For the 
relevant-none difference wave, the peak amplitude was − 3.36 uV, SD 
= 2.35, t(20) = 6.55, p < .001, d = 1.43. For the irrelevant-none dif-
ference wave, the peak amplitude was − 2.03 uV, SD = 2.05, t(20) =
4.54, p < .001, d = 0.99. For the both-none difference wave, the peak 
amplitude was − 3.08 uV, SD = 2.63, t(20) = 5.99, p < .001, d = 1.31. 

We next conducted a repeated-measures ANOVA with the single 
factor of difference type (relevant-none, irrelevant-none, both-none) to 
compare across the three conditions. The effect was significant, F(1.99, 
39.77) = 4.31, p = .02, ηp

2 = 0.18, reflecting a greater difference for 
task-relevant than for task-irrelevant changes, t(20) = 2.83, p = .01, 
d = 0.62 and as well as a greater difference for both-change than task- 
irrelevant changes, t(20) = 2.12, p = .047, d = 0.46. The difference 

between task-relevant and both-change trials was non-significant, t 
(20) = 0.60, p = .56, d = 0.13. 

In summary, the results of these exploratory peak amplitude analyses 
are in partial agreement with those of the mean amplitude analyses. 
Both sets of analyses converge to suggest that: 1) N200 amplitudes are 
larger for task-relevant change and both-change displays relative to 
task-irrelevant change displays, and 2) task-relevant change displays 
elicit comparable N200 amplitudes to both-change displays. However, 
while mean amplitude analyses revealed no significant difference be-
tween irrelevant-change and no-change trials, examination of peak 
amplitudes raises the possibility that the N200 potentials evoked by 
irrelevant-change trials were delayed and attenuated, but not elimi-
nated. As discussed further below, this pattern mirrors that of the 
behavioral results in suggesting that the presence of a task-relevant 
feature can be an important determinant of whether VWM comparison 
is object- or feature-based. 

Fig. 6. Mean amplitudes for the N200 separated by feature repetition and change type. Task-irrelevant change trials produced minimal N200 amplitudes. Error bars 
denote standard error. 

Fig. 7. Mean amplitudes for the LPC separated by feature repetition and change type. Task-irrelevant change trials produced smaller LPC amplitudes than trials 
containing a task-relevant change. Error bars denote standard error. 
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Fig. 8. A) Grand average ERP waveforms time-locked to the post-hange arrays in Block 2 for task-relevant (color) change trials, task-irrelevant (shape) change trials, 
both-change trials, and no-change trials. Waveforms are plotted positive-up and are shown for nine electrode locations, including frontal (F3, Fz, F4), central (C3, Cz, 
C4), and parietal sites (P3, Pz, P4). B) Topographical plots of differences among conditions over the time window of interest. Waveforms and topographical plots are 
collapsed across levels of feature repetition. 
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6. Discussion 

Previous research has provided mixed evidence as to when VWM is 
biased toward feature- versus object-based processing (Awh, Barton, & 
Vogel, 2007; Bays, Wu, & Husain, 2011; Fougnie & Alvarez, 2011; Gao 
et al., 2016; Gu et al., 2022; Li, Qian, & Liang, 2018; Luck & Vogel, 1997; 
Meyerhoff, Jardine, Stieff, Hegarty, & Franconeri, 2021; Niklaus, Nobre, 
& van Ede, 2017; Shen, Tang, Wu, Shui, & Gao, 2013; van Lamsweerde, 
Beck, & Johnson, 2016; Vogel, Woodman, & Luck, 2001; van Lams-
weerde and Beck, 2015; Wang et al., 2016, 2017; Wheeler & Treisman, 
2002; Yin et al., 2011, 2012). Prior evidence from ERP research supports 
the idea that the comparison stage of VWM is biased toward 
object-based processing (Yin et al., 2011, 2012). The goal of this study 
was to examine the extent to which the processing of task-irrelevant 
features in VWM comparison can be feature-based under appropriately 
conducive circumstances. We attempted to create such circumstances by 
1) having features repeat within a display so that feature-based pro-
cessing would be more efficient and 2) using a strong task-relevance 
manipulation by including an initial block (block 1) in which all 
change trials were task-relevant. 

Both behavioral and electrophysiological data suggests that we were 
successful in creating a situation conducive to feature-based processing. 

Performance in block 1 was high, suggesting that participants were able 
to focus on the task-relevant change. In addition, in both blocks 1 and 2, 
feature repetition improved change detection accuracy. Indeed, for trials 
containing a task-relevant change with repeated features in block 2, 
neither the hit rate nor response times differed between task-relevant 
change and both-change trials. N200 and LPC amplitudes were also 
comparable between task-relevant and both-change trials regardless of 
feature repetition. Overall, these data suggest that when a task-relevant 
feature is present, feature-based processing can be encouraged when 
features repeat within a display and a sufficiently strong manipulation of 
task-relevance has been established (as we did with block 1). 

We found a different pattern of results for trials that did not contain 
task-relevant feature changes (no-change and task-irrelevant change 
trials). Specifically, both reaction time and false alarm rates were higher 
for task-irrelevant change relative to no-change trials. Moreover, while 
our planned ERP analyses revealed no differences in either the N200 or 
LPC between these trial types, exploratory analyses suggested that there 
may have been a later N200 difference between task-irrelevant change 
and no-change trials, implying that the comparison stage for task- 
irrelevant changes may have been delayed but not eliminated. Finally, 
unlike on trials containing a task-relevant change, neither accuracy nor 
reaction times on target-absent trials was facilitated by feature repeti-
tion. Altogether, these results suggest that the balance of feature- and 
object-based processing differed according to whether a change was 
present along the task-relevant feature. 

There are multiple stages of VWM processing that contribute to 
change detection performance, including 1) attention and encoding, 2) 
maintenance, 3) comparison, 4) decision/response (Beck, Peterson, & 
Angelone, 2007; Simons, 2000; Simons & Rensink, 2005; Wilken & Ma, 
2004). Our behavioral and ERP results provide clues as to how VWM 
processing stage(s) can flexibly switch between object based and feature 
based processing. Behaviorally, evidence of feature-based processing 
was found only on trials containing a task-relevant change. This finding 
rules out the possibility that the pre-change displays were processed in a 
purely feature-based manner, because both shape and color information 
were available at the onset of the post-change array. On the other hand, 
N200 amplitudes did not differ between both-change and task-relevant 
change trials suggesting that by the time VWM comparison took place, 
feature-based processing had been engaged, at least for trials containing 
a task-relevant change. Finally, there was no evidence of object-based 
processing for either trial type during the LPC. The timing and scalp 
distribution of the LPC effects shown here suggest a strong contribution 
of the P3b subcomponent. The functional significance of the P3b is a 
matter of considerable debate, with hypotheses ranging from memory 
storage to stimulus-response reactivation (for review see Verleger, 
2020). Regardless, the lack of a difference in LPC amplitudes between 
task-irrelevant change and no-change trials suggests that stage(s) of 
processing reflected by this component were also applied in a 
feature-based manner. 

Our ERP results stand in contrast with those of previous work. In at 
least two prior change detection studies (Yin et al., 2011, 2012), 
task-relevant and task-irrelevant feature changes elicited equivalent 
N200 amplitudes, suggesting that VWM comparison was object-based. 
As with the N200, Yin et al. (2012) found no differences in mean LPC 
amplitude between task-relevant and task-irrelevant stimuli, suggesting 
that post-comparison evaluation and/or response processes were 
applied equally to both types of stimuli. Again, we propose that the 
differences between our results and those of Yin et al. (2011, 2012) 
stemmed from our efforts to create conditions conducive to 
feature-based processing. In the case of change detection, object-based 
processing may be the most efficient strategy when participants are 
not in a strong task-relevance mindset and thus have difficulty filtering 
out conspicuous changes to task-irrelevant features. However, once this 
mindset is established—and particularly in conjunction with 
within-display feature repetition—feature-based processing is more 
efficient and thus is “adopted” by certain stages of VWM. 

Fig. 9. Waveforms depicting the subtraction between relevant- and no-change 
trials (black), irrelevant- and no-change trials (red), and both- and no-change 
trials (blue). Waveforms are plotted positive up and are shown for one frontal 
midline electrode (Fz) and one parietal midline electrode Pz). 
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As an important caveat, while we tried to align our work as closely as 
possible with Yin (2011, 2012) aside from the task-relevancy induction 
and inclusion of feature repetition, it remains possible that other, un-
accounted for differences between our study and theirs also contributed 
to differences in our results. Future research that manipulates these 
factors within the same study would provide a more conclusive 
demonstration that object- and feature-based comparison processes can 
be deployed flexibly, not only across trial types, but also for the same 
trial type under different types of task relevance. 

The current study also contributes to understanding the facilitative 
effect of within-display feature repetition on change detection perfor-
mance (Meyerhoff et al., 2021; van Lamsweerde et al., 2016; van 
Lamsweerde & Beck, 2015). This, too, was specific to trials containing a 
task-relevant change: hit rates were higher on trials in which features 
were repeated, but false alarms were unaffected. However, this behav-
ioral pattern was not mirrored in the ERPs elicited by the post-change 
array, which were entirely unaffected by feature repetition. One possi-
bility is that the processes involved in “grouping” along the task-relevant 
feature occurred partially or entirely during the pre-change array or 
were otherwise distributed in such a way that was not well time-locked 
to the onset of the post-change array. By this account, the fact that 
feature repetition only affected the hit rate could reflect an uneven effect 
of grouping on the ability to detect task-relevant changes versus the 
ability to ignore task-irrelevant changes, rather than reflecting differ-
ences in whether grouping occurred in the first place. Indeed, capacity 
estimates revealed larger Cowan’s K for repeated- compared to 
unique-feature trials, suggesting that participants stored more in VWM 
on repeated trials. Larger capacity estimates under conditions of feature 
repetition indicate that the beneficial effects of repetition on perfor-
mance may stem in part from more efficient processing of the 
pre-change display, which may explain why the beneficial effects of 
feature repetition were not accompanied by changes to the N200 or LPC 
elicited by the post-change array. Future research designed specifically 
to examine encoding processes could shed additional light on this issue. 

It is worth noting that the N200 effects reported here and in previous 
work using change detection (Yin et al., 2011, 2012) bear some 
resemblance to the visual mismatch negativity (vMMN), which occurs 
over a similar time window but with an occipital rather than anterior 
scalp distribution. However, these two components have different 
functional properties. The vMMN is sensitive to violations of inciden-
tally learned environmental regularities (e.g., “deviant” stimuli, such as 
an occasional asymmetry in a stream of symmetric patterns; 
Kecskés-Kovács et al., 2013) and is famously insensitive to whether or 
not the information occurs within the focus of attention (Czigler, 2014; 
Stefanics, Kreml Ã¡Ä ek, & Czigler, 2015). By contrast, the anterior N200 
is elicited by attended deviance from an active working memory tem-
plate, which can be intentionally updated with new goal information 
(Folstein and Van Petten, 2008). The cognitive processes indexed by the 
N200 are thus more relevant to change detection, which requires 
working memory templates to be updated on a trial-by-trial basis. 

Finally, although our study focused largely on flexible trade-offs 
between object- and feature-based processing in the comparison stage 
of VWM, this may not be the earliest stage that can manifest such flex-
ibility. It would be interesting for future research to examine measures 
of other stages such as encoding and maintenance (for example, via the 
contralateral delay ERP component; e.g., Woodman & Vogel, 2008) to 
directly test this possibility and broaden the understanding of sources of 
flexibility in how information is processed in VWM. Nonetheless, the 
current study provides the first electrophysiological evidence that 
feature-based processing can be engaged during the comparison stage, 
while raising the possibility that the balance of feature- and object-based 
processing may depend on the strength of the task-relevance manipu-
lation. As such, this study demonstrates that increased attention to the 
role of task demands may help to reconcile discrepant findings in the 
debate regarding when object- or feature-based processing in VWM 
occurs. 
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