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A Model of Clutter for Complex, Multivariate 
Geospatial Displays

Maura C. Lohrenz, Naval Research Laboratory, Stennis Space Center, Mississippi,  
J. Gregory Trafton, Naval Research Laboratory, Washington, D.C., Melissa R. 
Beck, Louisiana State University, Baton Rouge, Louisiana, and Marlin L. Gendron, 
Naval Research Laboratory, Stennis Space Center, Mississippi

Objective: A novel model of measuring clutter in complex geospatial displays was 
compared with human ratings of subjective clutter as a measure of convergent valid-
ity. The new model is called the color-clustering clutter (C3) model. Background: 
Clutter is a known problem in displays of complex data and has been shown to affect 
target search performance. Previous clutter models are discussed and compared with 
the C3 model. Method: Two experiments were performed. In Experiment 1, partici-
pants performed subjective clutter ratings on six classes of information visualizations. 
Empirical results were used to set two free parameters in the model. In Experiment 2, 
participants performed subjective clutter ratings on aeronautical charts. Both experi-
ments compared and correlated empirical data to model predictions. Results: The first 
experiment resulted in a .76 correlation between ratings and C3. The second experi-
ment resulted in a .86 correlation, significantly better than results from a model devel-
oped by Rosenholtz et al. Outliers to our correlation suggest further improvements to 
C3. Conclusions: We suggest that (a) the C3 model is a good predictor of subjective 
impressions of clutter in geospatial displays, (b) geospatial clutter is a function of color 
density and saliency (primary C3 components), and (c)  pattern analysis techniques 
could further improve C3. Application: The C3 model could be used to improve the 
design of electronic geospatial displays by suggesting when a display will be too clut-
tered for its intended audience.
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mlohrenz@nrlssc.navy.mil. Human Factors, Vol. 51, No. 1, February 2009, pp. 90-101. DOI: 10.1177/0018720809333518. 
Copyright © 2009, Human Factors and Ergonomics Society.

INTRODUCTION

Clutter is a known problem in electronic 
geospatial displays, on which many types of 
data (multivariate) are fused and presented as 
one image. Displays ranging from handheld 
global positioning systems to complex geospa
tial information systems (GIS) and military  
moving maps present vast amounts of information, 
including maps, weather radar, satellite imagery, 
routes, place names, and metadata (descriptive 
information such as runway lengths and urban 
populations). In this context, clutter can refer to 
unwanted or unnecessary information, but often it 
refers to an overabundance of useful information.

Excess clutter on a display can result in  
confusion by obscuring important information. 
Previous studies have associated user perfor-
mance with display complexity; for example, 
clutter on an aircraft moving map has been 
found to disrupt a pilot’s visual attention, result-
ing in greater uncertainty concerning target 
locations (Schons & Wickens, 1993; Wickens & 
Carswell, 1995). Lohrenz, Myrick, Trenchard, 
Ruffner, and Cohan (2000) reported that pilots 
will turn off the moving-map display if they  
perceive it to be too cluttered, thereby removing 
a potential distraction.

Research has identified several factors 
related to clutter that increase search time to 
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find a predetermined target. For example, a tar-
get is harder to locate as the number of items 
in a visual array that share features with the 
target increases (Wolfe, 1998). The similarity 
of the target to other information in the visual 
array also affects search performance, with 
higher degrees of similarity leading to slower 
search (Duncan & Humphreys, 1989). Search 
becomes less efficient as items are positioned 
more closely together, allowing them to occlude 
one another (Bravo & Farid, 2004a, 2004b). 
When items are arranged in a predictable fash-
ion (e.g., a grid), targets are found more readily 
than when items are randomly arranged (Beck 
& Trafton, 2007). Finally, targets are harder to 
locate in more complex backgrounds (Neider & 
Zelinsky, 2006). Considering all the factors that 
can affect the relationship between clutter and 
visual search, the usefulness of a quantifiable 
clutter model becomes readily apparent.

The obvious first step in managing display 
clutter is determining whether a display is, in 
fact, too cluttered, which requires a reliable 
definition of clutter. Clutter has been defined 
extensively for text-based displays. Tullis (1981, 
1983) found that both people’s perception of 
clutter and their ability to locate items in screens 
of text are influenced by (a) the density of text 
on the screen, (b)  the number and size of text 
groups, (c)  the complexity of text groups, and 
(d)  the presence of highlighting using color, 
size, and so on.

Tullis’s (1981, 1983) definition can be extended 
to multivariate displays consisting of geospa-
tial features instead of (or in addition to) text. 
In GIS terms, a feature is any displayed item 
categorized as one of four types: a point with 
an associated symbol (e.g., airport location or 
city center), a line (road or river), an area (forest 
or urban area), or text (city name or elevation 
label). Following Tullis, we suggest that clutter 
in a geospatial display is influenced by (a) the 
density of discernible features on the display, 
(b) the number and size of features, (c) the com-
plexity or diversity of features, and (e) feature 
highlighting using color, size, and so on.

We are interested in the impact of clutter on 
the effectiveness of a display, measured by a 
user’s assessment of clutter in the display and his 

or her ability to access and use information. For 
this reason, the definition of clutter proposed by 
Rosenholtz, Mansfield, and Jin (2005) is appropri-
ate for our purposes: Clutter is the state in which 
excess items, or their representation or organi-
zation, lead to a degradation of performance at 
some task. Rosenholtz et al. suggested that clut-
ter is a function of how easily a new, salient item 
could be added to a display. According to their 
paradigm, cluttered displays have an overly con-
gested feature space, leaving little room for new 
features. Their model measures clutter as a func-
tion of feature congestion, whereby the features in 
question are color and luminance contrast rather 
than actual displayed items.

Other researchers (e.g., Zuschlag, 2004) who 
have attempted to quantify clutter in complex 
displays also focus on the contribution of lumi-
nance contrast or saliency to clutter. Saliency, 
in this case, refers to how conspicuous a dis-
played item appears to the user relative to other 
items in the display (modeled as a saliency map 
in Itti, Koch, & Niebur, 1998). In the context of 
luminance contrast, saliency is the difference in 
luminance between the item of interest and sur-
rounding items or background. Saliency can be 
thought of as a form of highlighting in Tullis’s 
(1981, 1983) list of contributions to clutter. 
We recognize different scales of saliency, from 
the saliency of one displayed item (“local” 
saliency) to average saliency over an entire 
image (“global” saliency).

OUR MODEL OF VISUAL CLUTTER

We suggest that our perception of clutter 
in complex geospatial displays is influenced 
by an interaction between global saliency and 
color density, which can be thought of as color 
homogeneity—the opposite of color variability. 
We define color density as a measure of how 
tightly packed similar-colored pixels are within 
an image. At one extreme, an image consisting 
of one solid color has the maximum color den-
sity of 1.0 (100%). Adding scattered pixels of 
different colors would lower color density.

Color density relates to two additional clutter 
components in Tullis’s (1981, 1983) list: feature 
density and display complexity. In general, we 
theorize that low saliency plus high color density 
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results in the impression of low clutter, whereas 
high saliency plus low color density results in the 
impression of high clutter. However, although 
increasing saliency in an image with low color den-
sity increases the impression of clutter (Figure 1, 
left two images), increasing saliency in an image 
with very high color density has little or no effect 
on clutter (Figure 1, right two images).

We propose the color-clustering clutter (C3) 
model, which uses a series of algorithms to 
detect visually distinct features in an image 
as clusters of similar-colored pixels, compute 
each cluster’s color density, compute saliency 
between clusters, and calculate clutter as a func-
tion of color density and saliency.

Color Density

We compute color density by clustering all 
of an image’s pixels in both geospatial location 
and color difference, such that adjacent pixels 
with similar colors cluster together, and cal-
culating the density of pixels per cluster. Each 
cluster represents a visually discernible feature 
in the display. 

The color-clustering algorithm was adapted 
from a point-clustering algorithm (Gendron, 
Layne, & Lohrenz, 2005), in which points to be 
clustered are represented in a so-called geospa-
tial bitmap. Each point is represented by a “set” 
bit (value = 1), and all other bits in the bitmap 

are “cleared” (0). The algorithm expands each 
set bit into a predetermined shape. All expanded 
bits that touch or overlap are clustered via the 
formation of new bitmaps. After clustering, 
another algorithm (Layne, Gendron, & Lohrenz, 
2008) produces vertices for a bounding cluster 
polygon, the density of which is the number of 
clustered points divided by the polygon’s area.

During color clustering, image pixels are clus-
tered if they are close (within predefined thresh-
olds) with respect to both geospatial location 
(x, y) and color difference (z). The x and y thresh-
olds are each 1 pixel, and the z threshold is cho-
sen to approximate a just noticeable difference 
between colors, according to an appropriate 
color difference formula (discussed later).

The algorithm operates on each color in the 
image, starting with the most prevalent color. 
The density of each color being clustered (the 
“seed” color) is the weighted average (by area) 
of the densities of all cluster polygons contain-
ing that color, where the density D

p
 of a cluster 

polygon p is as follows:

D
p
 = Σ

c = 1 to n
[(1 – E

c
/M)N

c
]/A

p
,

where n = number of colors in the image within 
distance z of seed color, E

c
 = Euclidean distance 

between color c and seed color in chosen color 
space, M = maximum possible color difference 
in chosen color space, N

c
 = number of pixels of 

color c in polygon p, and A
p
 = area of p.

Each pixel is included in a single cluster: After 
inclusion in a cluster, the pixel is removed from 
the list of pixels yet to be clustered. If a pixel lies 
inside a cluster polygon’s boundary, but the dif-
ference between its color and that cluster’s seed 
color is greater than z, then the pixel is excluded 
from that cluster’s density calculation and will 
be clustered with another seed color.

The color density D of the image is a weighted 
average (by total area) of all the polygon densi-
ties D

p
 in the image. Lohrenz and Gendron (in 

press) describe this algorithm in more detail.

Saliency

After clustering has been completed, saliency S 
is computed as a weighted average (by edge length) 
of color differences among adjacent clusters:

Figure 1. Electronic chart samples illustrating the 
impacts of color density and global saliency on clutter.

 at Ebsco Electronic Journals Service (EJS) on March 26, 2010 http://hfs.sagepub.comDownloaded from 

http://hfs.sagepub.com


Clutter Model for Complex Displays	 93

S = Σ(Z
e
L

e
)/Σ(L

e
),

where Z
e 
= difference in color between adjacent 

clusters along their shared edge e and L
e
 = length 

of e in linear pixels.

Color Difference Formula

For both color density and saliency, z 
depends on the color difference formula used. 
The Commission Internationale de l’Eclairage 
(CIE) developed the ∆Lab color difference for-
mula (Euclidean distance between colors in CIE 
L*a*b* space) and the more recent CIEde2000 
(CIE, 2001) formula to approximate the human 
visual system’s ability to detect color differ-
ences. However, neither agrees perfectly with 
psychophysical color difference data, and 
CIEde2000 in particular is very complex and 
computationally intensive (Sharma, 2003).

Other color difference formulas we consid-
ered include ∆HSV (Euclidean distance in hue, 
saturation, and value), ∆RGB (red, green, blue), 
and a preliminary “∆RGBL” formula that we 
propose in this article, in which the tristimulus 
RGB values are weighted by the human eye’s 
relative sensitivities to red, green, and blue 
light, estimated by the luminosity response 
curve in Foley and Van Dam (1984, Figure 
17.18), scaled to luminance (L) = 1:

∆RGBL = SQRT[(∆R*0.3)2+(∆G*0.6)2 

+(∆B*0.1)2+∆L2]*MAX(L1, L2)/100.

We performed an experiment to choose 
which formula was best for calculating z in the 
color-clustering algorithm (i.e., to determine 
whether adjacent pixel colors are just notice-
ably different). Participants were shown a 
series of solid-colored squares in which a small 
dot, close in color to the background, was ran-
domly placed within a 2° visual angle from the 
center of the display (10% of stimuli contained 
no dot). Dot colors were chosen to be similar to 
the background in one color component (R, G, 
B, L, a, b, H, S, or V). Participants were asked 
to report the following: 1 = cannot see a dot, 
2 = can barely see a dot, or 3 = can clearly see 
a dot.

A series of linear regression analyses sug-
gest that the color difference formula that best 

predicted participants’ ability to see the dot was 
our proposed ∆RGBL, with a correlation (r) of 
0.55 (r2 = .30; t = 22.2, n = 1,125, p < .0001). 
The other formulas had less impact on partici-
pants’ ability to see the dot, although all t tests 
were significant (p  < .0001): ∆RGB r  = .39, 
∆Lab r = .36, CIEde2000 r = .34, and ∆HSV 
r  = .17. Results were comparable on each of 
four identical computer monitors set to factory-
default brightness settings.

The color-clustering algorithm clusters adja-
cent pixels if they are close in color. Because the 
algorithm considers each pixel individually, this 
process is similar to determining color close-
ness for the small dots in the previous experi-
ment. The best color difference formula in this 
case was ∆RGBL. For ∆RGBL values greater 
than 12, participants could consistently (but 
barely) see a difference (mean response = 2.1). 
Therefore, we chose z = 12 ∆RGBL units as an 
estimate of just-noticeable color differences for 
the clustering algorithm.

C3

After clustering all pixels in an image and 
computing color density (D) and global saliency 
(S), averaged across all clusters, we found that 
the C3 model estimates clutter as a continuous 
series of exponential growth curves (Figure 2):

Clutter = F(1-D)e-Ie-S/G

F is an arbitrary scale factor, and F(1 – D) 
is the curve’s upper asymptote (i.e., maximum 
C3 value) for color density D. We set F = 15 
to map the clutter values to the subjective clut-
ter scale used in the following experiments. 
The parameters I and G, which determine the 
curve’s inflection point and (with saliency) 
growth rate, respectively, were derived empiri-
cally in one experiment and validated in a  
second experiment.

Our clutter model is an adaptation of the 
Gompertz function (Gompertz, 1825), which is 
used to model time series data in which growth 
is slowest at the beginning and end of a period. 
Waliszewski and Konarski (2005) explained 
that this function models “the co-existence of at 
least two antagonistic processes with the com-
plex coupling of their probabilities” (p. 277). 
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In our case, the two processes are color density 
and saliency.

Figure 2 illustrates how this function fits our 
concept of clutter: For very high color densi-
ties (e.g., 90%), clutter remains low regardless 
of saliency (as previously shown in Figure 1, 
right). As color density decreases, saliency has a 
potentially greater impact on clutter. Meanwhile, 
with low global saliency (below about 50 in this 
model), adjacent features tend to be more dif-
ficult to distinguish, reducing the amount of 
perceived clutter. At higher saliencies, adjacent 
features become clearly discernible, and clutter 
becomes a linear function of color density.

As an initial test of the convergent validity of 
the C3 model, the following experiments focus 
on subjective impressions of clutter, which we 
compare with both C3 and Rosenholtz clutter 
measures.

CLUTTER EXPERIMENT 1

In Experiment 1, we manipulated the two 
C3 variables (I and G) to maximize correlations 
between our model and subjective impressions 
of clutter for a wide variety of graphic displays. 
We verified these variables using new stimuli in 
Experiment 2.

Method

Participants. From among those we recru
ited, 57 undergraduate psychology students from 

George Mason University participated in this 
study for course credit. Participants ranged in 
age from 18 to 26 (M  = 20.1) years. All had 
normal or corrected-to-normal vision; none was 
color-blind. The experiment lasted approxi-
mately 30 min.

Materials. Stimuli consisted of 58 diverse 
graphic displays in six categories: airport ter-
minal maps, flowcharts, road maps, subway 
maps, topographic charts, and weather maps 
(Figure 3). Most graphics contained multiple 
feature types (points, lines, areas, text) and col-
ors. Graphics ranged in size from 300 × 600 
pixels to 800 × 600 pixels and were displayed 
at 72 pixels per inch. Five graphics were down-
loaded from Rosenholtz’s Web site (http://web 
.mit.edu/rruth/) and are described in Rosenholtz 
et al. (2005).

Procedure. Participants were tested in small 
groups of 5 to 10. Each group received a differ-
ent random order of stimuli. Participants were 
asked to rate how cluttered they thought each 
graphic appeared, from 1 (not cluttered) to 10 
(extremely cluttered). Participants were given 
as much time as needed to rate each graphic; 
most responded within 10 s.

Results

We calculated global saliency and color 
density for each graphic, then manipulated the 
two C3 variables and compared resultant clut-
ter values with subjective ratings. The highest 
correlations (within graphic categories and for 
all graphics combined) occurred when I = 6.3 
and G = 10.

Average clutter ratings of stimuli ranged 
from 3.3 to 9.5 (M = 6.2, SD = 1.5). Overall, 
participants were relatively consistent with 
one another, r  = .47, z  = 3.5, p  < .0005. To 
explore how well C3 matched subjective rat-
ings, the mean rating of each graphic was cal-
culated and correlated with C3, shown in Table 
1 (averaged by category) and Figure 4. The 
average C3 for stimuli ranged from 1.2 to 8.7 
(M = 3.4, SD = 1.8).

We also calculated clutter for each graphic 
using software featured in Rosenholtz et al. 
(2005), available from http://web.mit.edu/rruth/
www/#software, and correlated these values 
with mean ratings (also shown in Table 1 and 

Figure 2. A continuous series of curves adapted from 
the Gompertz growth function defines the color- 
clustering clutter model.
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Figure 4). Average Rosenholtz clutter values 
for stimuli ranged from 0.2 to 0.6 (M  = 0.3, 
SD = 0.1).

Not surprisingly, different types of graphics var-
ied in their mean subjective ratings. Participants 
rated airport terminal maps, flowcharts, and 
weather maps approximately 1 point less clut-
tered than road maps, subway maps, and top-
ographic charts. Both C3 and Rosenholtz’s 

models also found airport terminal maps, flow-
charts, and weather maps to be less cluttered, on 
average, than the other three categories.

Discussion

The C3 model accounts for 58% of the vari-
ance (r  = .76, t  = 8.8, p  < .0001) in subjec-
tive clutter ratings for all graphics combined, 
whereas Rosenholtz’s model accounts for 47% 

Figure 3. Examples of graphic displays (by category) shown to participants during Experiment 1. Top: airport 
terminal maps, flowcharts; middle: road maps, subway maps; bottom: topographic charts, weather maps.

 at Ebsco Electronic Journals Service (EJS) on March 26, 2010 http://hfs.sagepub.comDownloaded from 

http://hfs.sagepub.com


96	 February 2009 - Human Factors

of the variance (r  = .68, t  = 7.0, p  < .0001). 
Fisher’s r  to  z′ transformation did not show 
these two correlations to be significantly differ-
ent (z = 1.3, p = .90), which suggests that both 
models did a similarly good job predicting sub-
jective impressions of clutter in this data set. It 
is remarkable that both models accounted for 
approximately 50% of variability in terms of 
subjective clutter.

The C3 model also correlates very well (r ≥ 
0.78, p  < 0.03) with mean ratings for all but 
one graphic category (airport terminal maps), 

Table 1. Correlations Between Mean Ratings and Clutter Models, Averaged by Graphic Category

Graphic					      
Category			   C3	 Mean	 Rosenholtz 
(Number	 Mean	 Mean	 Correlation (r)	 Rosenholtz	 Correlation (r)  
of Graphics)	 Rating	 C3	 With Ratings	 Clutter	 With Ratings

Airport terminals (9)	 5.87	 2.10	 .48	 (p > .10)	 0.30	 .11	 (p > .10)
Flowcharts (8)	 5.70	 2.71	 .78	 (p = .02)	 0.28	 .72	 (p = .04)
Road maps (14)	 6.87	 4.39	 .82	 (p = .0003)	 0.33	 .90	 (p < .0001)
Subway maps (9)	 6.70	 3.13	 .81	 (p = .008)	 0.33	 .54	 (p > .10)
Topographical charts (8)	 6.81	 5.37	 .81	 (p = .014)	 0.37	 .68	 (p > .05)
Weather maps (10)	 5.20	 2.26	 .81	 (p = .004)	 0.22	 .55	 (p > .05)
All graphics (58)	 6.23	 3.38	 .76	 (p < .0001)	 0.31	 .68	 (p < .0001)

Note: C3 = color-clustering clutter.

suggesting that C3 is an appropriate model of 
clutter for many different graphic types. This 
is partly because we manipulated our free 
variables to maximize correlations both within 
categories and for all graphics combined, 
in hopes that C3 would be robust for many 
diverse graphic types. In contrast, correlations 
between mean ratings and the Rosenholtz 
model are considerably lower than C3 for all 
but one category (road maps), and only two 
categories (road maps and flowcharts) resulted 
in p  < .05, which suggests that this clutter 
model might be appropriate for a more limited 
set of graphic types.

Most graphics in this experiment consisted of 
a single, dominant feature type, and the number 
of these features (the feature set size) seems to 
have significantly influenced subjective clutter 
ratings. For example, the flowcharts consisted 
entirely of text-based “bubbles,” the number of 
which could be thought of as each flowchart’s 
feature set size. Likewise, each airport terminal 
map consisted almost entirely of similar-looking 
icons, each weather map mostly consisted of 
pairs of weather icons and temperature labels, 
and the road and subway maps consisted of lin-
ear features (roads, subway lines) and associated 
text strings. The correlation between feature set 
size and subjective ratings for these displays 
was .58 (r2 = .33), suggesting that up to a third 
of the variation in ratings could be explained by 
the number of features in each image.

Despite a significant set size effect, Experi
ment 1 showed strong support for both clutter 

Figure 4. The correlation between mean subjective rat-
ings of clutter and color-clustering clutter metric for 
all graphics in Experiment 1 is .76. The correlation 
between ratings and Rosenholtz’s clutter metric for 
these graphics is .68.
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models, with C3 slightly stronger and poten-
tially a more versatile model of clutter than 
Rosenholtz’s for diverse graphic categories. 
The C3 model, however, used two free param-
eters determined empirically from this data 
set. To determine whether those parameters 
would generalize to other graphics, we ran a 
second experiment with different participants 
and different graphics while keeping the two  
C3 parameters constant.

EXPERIMENT 2

Experiment 2 is a replication of Experiment 
1 and a validation of the C3 parameters defined 

in Experiment 1. Experiment 2 also was 
designed to minimize the set size effect seen 
in Experiment 1 by using graphics with more 
diverse, dissimilar features.

Method

Participants. From among those we recruited, 
55 undergraduate psychology students from 
Louisiana State University participated in this 
study for course credit. Participants ranged in 
age from 18 to 33 (M = 20.1) years. All partici-
pants had normal or corrected-to-normal vision; 
none was color-blind. The experiment lasted 
approximately 10 min.

Figure 5. Samples of aeronautical chart images shown to participants during Experiment 2. Top: low clutter bin; 
middle: medium clutter bin; bottom: high clutter bin.
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Materials. Stimuli consisted of 54 aero-
nautical chart samples presented as 256-color 
GIF images (740 × 580 pixels), including 21 
civilian sectionals and 33 military aeronau-
tical charts from the National Geospatial-
Intelligence Agency. Each graphic subtended 
28.5° × 23.2° (computed from a viewing dis-
tance of 35 cm).

We initially reviewed 175 chart samples 
before choosing the final set, in an attempt to 
include as wide a range of clutter as possible 
while maintaining a diversity of chart types 
and color palettes. We ran our C3 model (using 
the parameters set in Experiment 1), recorded 
a clutter value for each of the 175 charts, and 
chose 18 charts (of varying chart series) to rep-
resent each of three clutter bins: low, medium, 
and high (Figure 5).

We also ran the Rosenholtz clutter model on 
the 54 charts to ensure that those clutter val-
ues had a similar distribution. Not all charts 
fell into the same clutter bins for both models. 
However, if we assume for each model that the 
lowest 18 clutter values are “low,” the middle 
18 are “medium,” and the highest 18 are “high,” 
then normalized (from 0 to 1) clutter averages 
(and standard deviations) are fairly consistent 
between the two models:

C3: low, 0.14 (SD 0.10); medium, 0.58 (0.03); 
high, 0.89 (0.05); overall, 0.54 (0.32).

Table 2. Mean Subjective Ratings and Clutter 
Models for Each Graphic (and Averaged for Each 
Clutter Category) in Experiment 2

	 M (SD)		  Rosenholtz 
Chart	 Rating	 C3	 Clutter

L01	 2.1 (1.3)	 1.5	 0.23
L02	 1.7 (1.6)	 1.5	 0.21
L03	 1.9 (1.3)	 1.9	 0.20
L04	 1.5 (1.4)	 2.0	 0.23
L05	 2.2 (1.6)	 2.0	 0.20
L06	 1.6 (1.4)	 2.0	 0.19
L07	 2.0 (1.3)	 2.1	 0.32
L08	 2.0 (1.6)	 2.1	 0.30
L09	 1.4 (1.2)	 2.1	 0.24
L10	 2.9 (2.1)	 2.4	 0.39
L11	 2.0 (1.6)	 2.4	 0.21
L12	 0.8 (0.9)	 3.0	 0.32
L13	 2.7 (1.8)	 3.2	 0.28
L14	 2.0 (1.6)	 3.4	 0.25
L15	 2.9 (1.8)	 3.5	 0.32
L16	 3.2 (1.6)	 3.5	 0.30
L17	 2.2 (1.4)	 3.7	 0.26
L18	 3.3 (1.9)	 4.1	 0.35
M01	 7.0 (1.7)	 5.6	 0.3
M02	 6.9 (1.7)	 5.7	 0.4
M03	 4.1 (1.9)	 5.8	 0.3
M04	 6.0 (1.7)	 5.8	 0.4
M05	 5.5 (1.8)	 5.8	 0.3
M06	 4.8 (2.1)	 5.9	 0.4
M07	 8.5 (1.1)	 5.9	 0.4
M08	 7.2 (1.7)	 6.0	 0.6
M09	 5.1 (1.8)	 6.0	 0.4
M10	 6.6 (2.3)	 6.0	 0.4
M11	 6.5 (1.8)	 6.1	 0.4
M12	 5.7 (1.6)	 6.1	 0.4
M13	 5.3 (1.6)	 6.2	 0.3
M14	 6.7 (1.5)	 6.2	 0.4
M15	 6.5 (1.5)	 6.2	 0.3
M16	 7.4 (1.5)	 6.3	 0.5
M17	 6.1 (1.4)	 6.3	 0.3
M18	 6.9 (1.9)	 6.3	 0.4
Z01	 6.8 (1.6)	 7.8	 0.4
Z02	 8.1 (1.4)	 7.9	 0.5
Z03	 7.3 (1.4)	 8.0	 0.4
Z04	 6.2 (1.9)	 8.1	 0.4
Z05	 8.2 (0.9)	 8.1	 0.5
Z06	 8.0 (1.2)	 8.2	 0.5

(continued)

Table 2. (continued)

	 M (SD)		  Rosenholtz 
Chart	 Rating	 C3	 Clutter

Z07	 7.8 (1.4)	 8.2	 0.5
Z08	 8.2 (1.0)	 8.3	 0.4
Z09	 7.6 (1.5)	 8.4	 0.4
Z10	 5.6 (1.7)	 8.4	 0.5
Z11	 7.7 (1.3)	 8.4	 0.4
Z12	 7.9 (1.3)	 8.5	 0.4
Z13	 6.7 (1.8)	 8.7	 0.5
Z14	 5.7 (1.7)	 8.8	 0.5
Z15	 7.7 (1.2)	 8.8	 0.4
Z16	 6.2 (2.0)	 8.9	 0.5
Z17	 3.2 (2.0)	 9.0	 0.4
Z18	 8.4 (1.1)	 9.3	 0.6

Note: C3 = color-clustering clutter.
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C3 and Rosenholtz clutter values (Table 2 and 
Figure 6): Average C3 values ranged from 1.5 to 
9.3 (M = 5.7, SD = 2.5), and average Rosenholtz 
clutter values ranged from 0.2 to 0.6 (M = 0.4, 
SD = 0.1).

Both clutter models correlate very well with 
mean ratings for these graphics: C3 r  = .86 
(p < .0001) and Rosenholtz r = .75 (p < .0001). 
Fisher’s z′ to r transformation indicates that the 
C3 correlation is significantly higher than the 
Rosenholtz correlation (z = 2.3, p = .02), sug-
gesting that C3 is a stronger predictor of subjec-
tive ratings for these displays.

There was one prominent outlier in the C3- 
versus-ratings plot—Chart Z17 (Figure 7)—which 
participants rated as much less cluttered than C3 
predicted (3.2 rating vs. 9.0 C3). The high C3 pre-
diction may have been caused by repeating squig-
gle patterns in this chart, which generated low 
color density values. Participants may have inter-
preted the patterned areas as less cluttered than C3 
could discern. Future enhancements to C3 might 
incorporate image segmentation or another pat-
tern analysis technique (such as subband entropy, 
suggested in Rosenholtz, Li, & Nakano, 2007) to 
account for lower perceptions of clutter in regions 
with regular, repeating patterns.

Discussion

This experiment replicated and extended 
results from Experiment 1 and validated the C3 

Rosenholtz: low, 0.17 (SD 0.11); medium, 0.44 
(0.06); high, 0.73 (0.13); overall, 0.45 (0.25).

Procedure. Participants were tested in groups 
of 4 or fewer. Using SuperLab 4.0.2 (Cedrus 
Corporation), we presented stimuli to each par-
ticipant in random order and recorded responses. 
Presentation of graphics was self-paced for each 
participant. As soon as a response was given, 
the next graphic appeared on the participant’s 
display. Participants first completed a target 
search task on each graphic, presented in ran-
dom order, results of which are published in 
Beck, Lohrenz, Trafton, and Gendron (2008). 
Following this task (which took an average of 17 
min per participant), participants took a 5-min 
break (on average) and then were shown the 
same graphics in a different random order and 
asked to rate how cluttered they thought each 
appeared, from 0 (not cluttered) to 9 (extremely 
cluttered). Most participants answered in less 
than 3 s per graphic.

Results

Average clutter ratings of stimuli ranged 
from 0.8 to 8.5 (M = 5.2, SD = 2.4). The mean 
rating for each graphic was compared with 

Figure 6. The correlation between mean subjective 
ratings of clutter and color-clustering clutter (C3) 
metric for all graphics in Experiment 2 is .86. The 
correlation between ratings and Rosenholtz’s clut-
ter metric for these graphics is .75. The C3 value for 
Chart Z17 is an outlier.

Figure 7. Chart resulting in outlier color-clustering clut-
ter (C3) rating. Participants rated Chart Z17 relatively 
uncluttered (3.2), but the C3 model rated it extremely 
cluttered (9.0).
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parameters (I and G) set in Experiment 1, which 
suggests that these specific parameters have a 
broad range of applicability. Experiment 2 dem-
onstrated an excellent fit between the empiri-
cal subjective ratings data and both C3 and 
Rosenholtz clutter models.

Both the C3 and Rosenholtz models were 
better predictors of subjective clutter ratings 
for graphics in Experiment 2 than for those in 
Experiment 1. This may be explained partly 
by the fact that most of the graphics in the first 
experiment (unlike the second) consisted of a 
single, dominant feature type, the number of 
which appears to have influenced subjective 
clutter ratings significantly, as discussed earlier.

In contrast, the aeronautical charts in the 
second experiment comprised a much greater 
diversity of cartographic feature types, which 
were more difficult to quantify into a single fea-
ture set size. We suggest that in the case of these 
more complex images, in which features are not 
easily “countable” and set size is not obvious, 
clutter models such as C3 and Rosenholtz’s 
model may be better predictors of subjective 
clutter (Beck et al., 2008).

CONCLUSIONS

The C3 model estimates the amount of per-
ceivable clutter in complex geospatial displays 
as a function of color density and saliency. In 
general, low color density plus high saliency 
results in high clutter, whereas high color 
density plus low saliency results in low clut-
ter. The model represents visually discernible 
features as clusters of adjacent, similarly col-
ored pixels. Color density can be thought of as 
color homogeneity within features (clusters), 
whereas saliency is an average color difference 
among features.

For two different sets of geospatial displays, 
correlations between subjective clutter ratings 
and the C3 model were higher than correla-
tions between ratings and another recently pub-
lished clutter model (Rosenholtz et al., 2005). 
This difference in correlations was significant 
for the second set of displays, which consisted 
of aeronautical charts. Analysis of one outlier 
chart (Z17, in Figure 7) suggests that improve-
ments to C3 might be gained by incorporat-
ing an image segmentation component to the 

model, such that regularly occurring patterns 
are interpreted as less cluttered than jarring, 
irregular effects.

The first data set consisted of images with 
easily observable feature set sizes (countable 
numbers of similar features), which accounted 
for 33% of the variance in subjective clutter rat-
ings. The second data set consisted of images 
with greater cartographic variability and no 
obvious feature set size. In both cases, C3 reli-
ably predicted subjective clutter perception. 
The correlation between C3 and ratings was 
higher in the second data set, in which feature 
set size was irrelevant. We suggest that for more 
complex displays, in which set size is difficult 
to determine, C3 may be a better predictor of 
subjective perceived clutter (Beck et al., 2008).

The ability to predict subjective impressions 
of display clutter is a good first step in deter-
mining whether clutter detracts from a display’s 
usefulness, but the ultimate test is comparing 
the clutter model with target search perfor-
mance. Another set of experiments completed 
by the authors demonstrated that C3 is also a 
good predictor of human response time when 
locating targets in displays of varying clutter 
(Beck et al., 2008).
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