R Self-tutorial, an Introduction to R Programming
Developed for graduate seminars at LSU (BIOL 7901)
Fall 2009 - “R for Ecologists” 
Spring 2013 - “Introduction to R”
Instructor:  Kyle E. Harms 
Tel. – 225-578-7566

e-mail – kharms@lsu.edu
This document contains a 4-session, self-tutorial introduction to R, the “free software environment for statistical computing and graphics” that developed out of S and S-plus (see the R Project website:  http://www.r-project.org).  R is a useful programming environment for many applications in ecology, evolutionary biology, and myriad other fields.
By the end of these sessions my hope is that you will be able to:  (1) read data from a file into an R session; (2) write data from an R session to a file; (3) create your own R functions; and (4) use R packages.

To learn the basics of R programming, type each command as it is shown below into an R session and think about the output.  I encourage you to make modifications to the commands that you type into your R session and to think about how the changes you make to the commands change the output.  If you are willing and self-motivated to explore R, especially by trial-and-error, soon you will be comfortably using R.
In the notes below, each command appears in:  Arial 10-point font.

Each command appears after a command prompt, i.e., the “greater than” symbol that appears on your computer screen in an R session:  “>”; you do not need to type this when you type an R command.
Remember to press the “Enter” key after each command.

R output appears in:  Courier 11-point font.
Acknowledgements
I owe a debt of gratitude to Rick Condit, whom I wish to thank for teaching me the rudiments of R programming in 2001.  I also wish to thank the members of my research group at LSU and the participants on the various Center for Tropical Forest Science working groups for subsequent inspiration and information concerning R.
A few useful references (from an ever-expanding list)
Bolker, Benjamin M.  2008.  Ecological Models and Data in R.  Princeton U. Press, Princeton, NJ.
Braun, John W. & Duncan J. Murdoch.  2008.  A First Course in Statistical Programming with R.  Cambridge U. Press, Cambridge, U.K.

Clark, James S.  2007.  Models for Ecological Data:  An Introdution.  Princeton U. Press, Princeton, NJ.

Clark, James S.  2007.  Statistical Computation for Environmental Sciences in R:  Lab Manual for Models for Ecological Data.  Princeton U. Press, Princeton, NJ.

Crawley, Michael J.  2002.  Statistical Computing: An Introduction to Data Analysis using S-Plus.  John Wiley & Sons, West Sussex, U.K.

Crawley, Michael J.  2005.  Statistics: An Introduction using R.  John Wiley & Sons, West Sussex, U.K.

Crawley, Michael J.  2007.  The R Book.  John Wiley & Sons, U.K.  [This is the one I most highly recommend]
Dalgaard, Peter.  2002.  Introductory Statistics with R.  Springer, New York, NY.

Kangas, Mike.  2004.  R: a computational and graphics resource for ecologists.  Frontiers in Ecology and the Environment 2:277.  [A one-page endorsement of R]
Krause, Andreas & Melvin Olson.  2000.  The Basics of S and S-Plus, 2nd Ed.  Springer-Verlag, Berlin, Germany.

Maindonald, John & John Braun.  2007.  Data Analysis and Graphics Using R.  Cambridge University Press, Cambridge, U.K.

Murrell, Paul.  2006.  R Graphics.  Chapman & Hall, Boca Raton, FL.
R Development Core Team.  2009.  R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.  ISBN 3-900051-07-0, URL http://www.R-project.org.  [This is the recommended citation that R provides; within an R session, simply type the command citation(), and the recommended citation format will appear]

Stevens, M. H. H.  (Forthcoming)  A Primer of Theoretical Population Ecology with R.  Use R! Series, Springer.

Venables, W. N., D. M. Smith and the R Development Core Team.  2001.  An Introduction to R.  Network Theory Limited, Bristol, U.K.

Installing R onto your computer (PC)
You should download and run the executable file that will install R onto to your own computer.  To do so, use the following instructions (current as of July 2009):

-  Go to the R Project website (www.R-project.org)
-  Click the “CRAN” (Comprehensive R Archive Network) link along the left-hand side of the R Project web page under the sub-heading “Download, Packages”
-  Click a link to select a “mirror” site from which to download the executable installation program
-  Select the appropriate operating system for your computer from within the “Precompiled Binary Distributions” box
For non-Windows operating systems, download the appropriate file or files
For Windows 95 and later, continue as follows:

-  Select “base”

-  Select and download the executable file that will install the current version of R (as of July 19, 2009 the current version is R-2.9.1).

-  Run the executable file that you just downloaded to your desktop and follow the instructions as they appear on your screen
An R icon should appear on your desktop

To open an R session, click (or double click) the R icon on your desktop…
Installing R onto your computer (Mac)
Follow the instructions in the YouTube video 

“How to Install R for Mac and Use a Few Basic Functions” – http://www.youtube.com/watch?v=ICGkG7Gg6j0

Note re PC vs. Mac

I wrote the following notes from the perspective of a PC-user, so some of the details concerning paths-to-files, etc. may need modification on a Mac.

SESSION 1
Some basics

> x=1
“=” is the assignment operator; in some R references you will see “<-” used, but this is no longer being supported by the ever-evolving R
> x

[1] 1
“[1]” indicates the position (see below), whereas “1” indicates the value of “x” 
> num.of.trees=739

“x” and “num.of.trees” are atomic variables
> num.of.trees

[1] 739
> a=b=2.76


Multiple assignment
> a



You do not need to type “a” and “Enter,” but I did so here to 

[1] 2.76


show that “a” now equals 2.76

> b



You do not need to type “b” and “Enter,” but I did so here to
[1] 2.76


show that “b” now also equals 2.76
> ls()



The functions ls() & objects() list all objects 
[1] "a" "b" "num.of.trees" "x" 
(variables and functions) created during the current R session; round parentheses “()” contain any arguments used by the function – in this case none, so the function uses its default conditions
You have now created 4 objects in your current R session and you have used one R function; since you did not create the “canned” function ls(), it does not appear in your list of objects.
> x=1:50  


Re-assigns the object “x” to be a vector
> x 



[1] 1 2 3 4 5 6 7 8 


The number in brackets is the index, i.e., the
[9] 9 10 11 12 13 14 15 16

position of the associated element of the vector,
…





and there are 50 elements, each with its own
[49] 49 50 
  


index in this vector
> x[25]
Calls up the 25th element of “x,” since square brackets “[]” refer to indices
> x[1:20]


Calls up the first 20 elements of “x”
> length(x)
Function length() counts the number of elements in “x;” note that “x” is an argument to the function length()
> mean(x)
 

Function mean() calculates the mean of the elements in “x”
> range(x)


Etc…
> var(x)


> summary(x)


> std_dev=sqrt(var(x))  

Here we have a function within a function
> z=51:100

> x/z



Vector division
> y=c(1,2,3,4,5,6,7,8,9,10)
Function c() combines atomic elements
> y2=c("BIOL","7083","Community","Ecology")

> mean(c(2,4,6))

Function within a function 
> seq1=seq(0,200,by=50)
Function seq() creates a sequence of numbers
> p1=(seq1^2)[3]  
Returns “p1” as the square of the third element of the vector “seq1”
> p2=(seq1^2)[-3]  
Returns “p2” as the square of all but the third element of the vector “seq1”
> q=seq1[seq1>100]
Returns “q” as the elements of “seq1” > 100
Two ways of declaring a variable that will later be filled with numeric info.:
> samp=0


> samp1=numeric()


Matrices
> xmat=matrix(1:25,nrow=5)

Function matrix() creates a matrix
> xmat

     [,1] [,2] [,3] [,4] [,5]

[1,]    1    6   11   16   21

[2,]    2    7   12   17   22

[3,]    3    8   13   18   23

[4,]    4    9   14   19   24

[5,]    5   10   15   20   25

> dim(xmat)
Function dim() provides the dimensions of a matrix; dim() is the 2D analog of length()
> xmat^3




     [,1] [,2] [,3] [,4]  [,5]

[1,]    1  216 1331 4096  9261

[2,]    8  343 1728 4913 10648

[3,]   27  512 2197 5832 12167

[4,]   64  729 2744 6859 13824

[5,]  125 1000 3375 8000 15625

> xmat[1,2]

Subset = intersection of first row and second column
[1] 6

> xmat[2,]

Subset = intersection of second row and all columns

[1]  2  7 12 17 22

> xmat[1:2,2:3]

Subset = intersection of first two rows and second plus third columns
     [,1] [,2]

[1,]    6   11

[2,]    7   12

> xmat[,4]

Subset = intersection of all rows and fourth column
[1] 16 17 18 19 20

> xmat[,-4]

Subset = intersection of all rows and all columns but the fourth
     [,1] [,2] [,3] [,4]

[1,]    1    6   11   21

[2,]    2    7   12   22

[3,]    3    8   13   23

[4,]    4    9   14   24

[5,]    5   10   15   25

> xmat[,c(1,3)]

Subset = intersection of all rows and first plus third columns
     [,1] [,2]

[1,]    1   11

[2,]    2   12

[3,]    3   13

[4,]    4   14

[5,]    5   15

> image(xmat)

Function image() produces an image of a matrix
> zmat=xmat*2

> zmat

     [,1] [,2] [,3] [,4] [,5]

[1,]    2   12   22   32   42

[2,]    4   14   24   34   44

[3,]    6   16   26   36   46

[4,]    8   18   28   38   48

[5,]   10   20   30   40   50

> xmat/zmat

Divide elements of one matrix by those of another 
     [,1] [,2] [,3] [,4] [,5]

[1,]  0.5  0.5  0.5  0.5  0.5

[2,]  0.5  0.5  0.5  0.5  0.5

[3,]  0.5  0.5  0.5  0.5  0.5

[4,]  0.5  0.5  0.5  0.5  0.5

[5,]  0.5  0.5  0.5  0.5  0.5

> z=matrix(1:10)
Assigns 1 through 10 as elements of a matrix of 10  rows by 1 column
> image(z) 
Provides a view of the matrix as an image of colors

> z=matrix(5,10,10)
Assigns fives as elements of a matrix of 10 rows by 10 columns
> image(z) 
Provides a view of the matrix as an image of colors – in this case monochromatic since only a single value appears in the matrix (5)
> z=matrix(1:5,10,10)


> image(z) 



> z[2,7]=3

Assigns a new value to 1 element of the matrix

> image(z)

Notice the orientation of the image

> image(t(z))
Function t() transposes the elements of the matrix; notice the orientation of the image

> z=matrix(1:3,5,5) 
Think about why you get a warning message in this case
> image(z)

> graphics.off()

Use the graphics.off() function to clear graphics from an R session screen
Reading data from files

A sample data set is available to you via a link on the course web site, at the following URL:

http://www.biology.lsu.edu/webfac/kharms/gigtree.txt
Save the file (“gigtree.txt”) to your computer’s “C:” drive before proceeding.

> help(read.table)
Function help() displays a help file for a function
> tree.data=read.table("c:/gigtree.txt", header=T)

Function read.table() reads the contents of a data set and creates a data frame from those contents.  A data frame is essentially a matrix containing a combination of numeric variables and character strings.  Use either “/” or “\\” in the path to the file.  The argument “header=T” is used for a data set containing labeled columns (a header).
> tree.data[1:10,]
Displays the first 10 rows of the data set
> dim(tree.data)
Provides the dimensions of the data frame
Manipulating data sets

Subsetting
> tree.data.dbh=tree.data$DBH
Subset 1 selected colmun ( DBH values (given in mm in this data set)
> length(tree.data.dbh)

> tree.data.dbh[1:10]
> tree.data.dbh2=tree.data[,5]

Subset 1 column ( column 5 only, i.e., DBH values 
> length(tree.data.dbh2)
> tree.data.dbh2[1:10]

> tree.gr1000=tree.data[tree.data$DBH>=1000,]
Subset selected rows ( individuals ( 1000 mm DBH
> dim(tree.gr1000)

> tree.gr1000
> tree.data.2=tree.data[,c(2,5)]





Subset 2 colmuns
> tree.data.2[1:3,]
 Species  DBH
1  MALOGU  222
2  DIPTPA 1240
3  VATAER  935

> tree.data.3=tree.data[,c("Species","DBH")]



Subset 2 colmuns
> tree.data.3[1:3,]
 Species  DBH
1  MALOGU  222
2  DIPTPA 1240
3  VATAER  935

> tree.data.4=data.frame(tree.data$Species, tree.data$DBH)

Subset 2 colmuns
> tree.data.4[1:3,]
 tree.data.Species tree.data.DBH
1            MALOGU           222
2            DIPTPA          1240
3            VATAER           935

So, it is possible to subset multiple columns on the column numbers (as in tree.data.2) or on the column names (as in tree.data.3), or to create a dataframe using the data.frame() function and listing the two columns to include (as in tree.data.4).


Sorting
> tree.gr1000.rank=rank(tree.gr1000$DBH)

Function rank() returns the list of ranks for 

> tree.gr1000.rank




each position of the current vector to place  [1] 35.0 37.0 27.0 50.0  8.0  etc…
the elements in ascending order
> tree.gr1000.order=order(tree.gr1000$DBH)  
Function order() returns the list of positions 

> tree.gr1000.order




of elements from the current vector that
[1]  37 50 49 29  6  etc…


would arrange them in ascending order
> tree.gr1000.order.neg=order(-tree.gr1000$DBH)  
Function order() returns the list of positions 

> tree.gr1000.order.neg




of elements from the current vector that

[1] 46 48 55 30 59  etc…
would arrange them in descending order (due to the “-” in the argument)
> tree.gr1000[tree.gr1000.order,]


Returns data arranged by ascending DBH
        Tag Species    GX    GY  DBH FertPlot

2838   3406  VATAER 247.3 540.2 1000        0

10564 12206  VATAER 444.4 163.7 1003        0

10385 12024  BUCHCA 405.1  94.8 1007        0

2434   2908  PRI2CO 208.0 332.1 1010        0

568     810  PRI2CO 107.0 405.3 1014       18
etc…
> tree.gr1000[tree.gr1000.order.neg,]


Returns data arranged by descending DBH
        Tag Species    GX    GY  DBH FertPlot

3764   4575  VATAER 402.6 584.6 1741       29

7016   8242  VATAER 467.2 639.8 1609       33

11201 12859  DIPTPA 386.4 205.8 1604        0

2451   2927  DIPTPA 230.4 312.0 1538        0

11940 13617  TERMAM 180.1 750.1 1519        0
etc…
Writing data to files

> help(write.table)

Function write.table() is useful for creating text files
> write.table(tree.gr1000, file="c:/tree.dbhgr1000.txt", quote=F, row.names=F, sep="\t")

Further information & suggestions

  Arguments:

Type a function name without parentheses to see its code typed out on screen.  To make the function work, type it with the appropriate arguments inside the parentheses.  Some functions have entirely optional arguments, while others require at least one or some specific arguments.

  Command line:
Use the arrow keys to move through commands previously used; the up arrow key will allow you to scroll through the most recent commands you have used.
Use the “Home” key to go to the beginning of a command.

Use the “Esc” to quit writing a command mid-way through.

  Digits:
The number of digits that R displays can be changed.

> options(“digits”)
To determine the current number of digits in an R session
> options(digits=10)
To set the current number of digits in an R session to 10

Note that it is advisable not to exceed 22 digits.

For example, you might encounter the following output from the following commands:

> options("digits")

$digits

[1] 7

> 0.987654321*2

[1] 1.975309

> options(digits=15)

> 0.987654321*2

[1] 1.975308642

  File menu:
Save History – To save all the commands used in a given R session.  The file should be named with file extension “.Rhistory”.

Load History – To retrieve a saved R session’s commands.

Save Workspace – To save the objects created during an R session.  The file should be named with file extension “.RData”.

Load Workspace – To retrieve the objects saved during an R session.

  Functions & Help:

To examine the syntax and use of any given function:

> help(function.name)

Calls up a help page for any specific function
or

> ?function.name

Calls up a help page for any specific function
Within a help window for a given function, the default arguments for the function are given under “Usage”.

  Graphics off:

To remove a graphics window (which is especially useful when using lots of graphics, because R seems to crash if too many graphics windows are opened at once):

 
> graphics.off()
  Help:

To view “help pages” (R Help documentation) on particular functions, type:



> help(function.name)    
e.g.,  > help(mean)
or



> ?function.name

e.g.,  > ?mean

Choose the Contents or Index tabs in an R Help window to show all functions in the R base package.

  Objects:

Functions ls() & objects() will tell you which objects are currently active in your R session.
Function rm() will remove an object (i.e., the one provided as an argument inside the parentheses) from your R session.

The following command will remove all objects from your R session:



> rm(list=ls())    

Reading data from a file with blanks or missing values:

The practice data set that accompanies these notes (gigtree.txt) contains no blanks or missing values, whereas other data sets might have some.  R makes use of “NA” to indicate a blank or missing value, so before reading in a data set with blanks or missing values, replace each blank or missing value with “NA” (not including the quotes).  

Note that for many R functions to work properly with a data set with missing values, the argument na.rm=T must be included, e.g.:
> mean(x, na.rm=T)

  Round parentheses & square brackets:

Round parentheses, “(” and “)”, contain the arguments of a function; they are also used to indicate precedence within mathematical expressions, e.g., “(x+2)/7”.
Square brackets, “[” and “]”, contain position information for subsets of an object. 
  Quit an R session:

> quit() 

or 

> q()

SESSION 2

If you ended your R Session 1 above before getting to this point, read in the sample file (sample data set) we used during Session 1:

> tree.data=read.table("c:/gigtree.txt", header=T)


…or, if you saved it as an R Workspace File from Session 1, load the workspace file, e.g., “TreeData.RData.”
Basic graphics
(Which will also help you visualize the sample data set)
> plot(tree.data$GX, tree.data$GY)

Function plot() creates a scatterplot of all stems
Try plotting different size-classes, e.g.:

> plot(tree.data$GX[tree.data$DBH>=200], tree.data$GY[tree.data$DBH>=200])

> plot(tree.data$GX[tree.data$DBH>=10 & tree.data$DBH<100], tree.data$GY[tree.data$DBH>=10 
& tree.data$DBH<100])

Notice from the plots that the trees larger than 200 mm DBH were mapped in the entire plot, whereas smaller stems were mapped in 36 sub-plots.
> hist(tree.data$DBH)




Function hist() creates a histogram
> hist(tree.data$DBH[tree.data$DBH>200])

… for stems ( 20-cm DBH
Graphics, such as the images created with the functions hist(), image(), and plot(), can be saved directly from the graphics window in a variety of formats, including Windows Metafile, Jpeg, etc.

> maxdbh=max(tree.data$DBH)

> b=c(seq(200,500,by=50),seq(600,maxdbh+100,by=100))

> hist(tree.data$DBH[tree.data$DBH>=200], breaks=b, col="red")
Writing R functions
> sq=function(x) return(x*x)

A one-line function can be written on the command line  
> sq




Returns the R code of the newly written function sq()
> sq(10)

Calls the function with the argument “x = 10”, where “x” 

[1] 100




is internal to the function.

Since the “x” in the function sq() is internal to the function, even if you had previously assigned a value to “x” outside the function in the R session, it would not be used as a default value for “x” inside the function, e.g.,   
> x=2

> sq()

Note that sq() will not work without an explicit argument for its internal “x” 

> sq(x)

Even so, “x” as defined outside the function can be used as the argument the

[1] 4

function requires, which causes the “x” from outside the function to be used 




inside the function


> mult=function(x,y,z) return(x*y*z)


Another one-line function, mult()
> mult(5,6,70)

[1] 2100

> mult(2.76, 3.14, 7.89)
[1] 68.3779

> mult2=function(x, y, z) return(c(x*x,y+z))

…and another, mult2()
> mult2(1,2,3)

[1] 1 5

> mult2(z=3, y=2, x=1)  


Default positions of variables within the arguments can be 

[1] 1 5  



overridden
> mult3=function(x,y,z=3) return(c(x*x,y+z))  

In function mult3() the default for z = 3
> mult3(1,2)

[1] 1 5 

It is generally recommended that functions requiring more than one line of code (i.e., the vast majority of functions) are written in a text editor, such as Notepad or Wordpad.  The following example repeats our previous function, but now written in a text editor and given a new name, mult4().

Create the following function in a file named “My_functions.txt” (or “My_functions.r”).  You might wish to keep your own R functions in a sub-dir named “R_functions.”  In this case, the path to your file would be:  “c:/R_functions/My_functions.txt”.

# My first function

The pound sign (#) signifies a comment; the text that 

mult4=function(x,y,z=3) 

appears on the same line after the pound sign is
  {



ignored by the function
    return(c(x*x,y+z))  

  }

> source("c:/R_functions/My_functions.txt")

The function source() “activates” the
> mult4






functions in “My_functions.txt;” type

function(x,y,z=3)               


the name of a function to see its code
  {                             

   return(c(x*x,y+z))  

 }

> mult4(1, 2)
[1] 1 5 

Manipulating data sets

In the following example, you will generate a species list from the sample data set.   

> sp.list=unique(tree.data$Species)
Function unique() provides a list of unique elements, which in this case are 6-letter codes that stand for species names
> sp.list.sort=sort(sp.list)

Function sort() provides a sorted species list
> length(sp.list)



Provides the species richness of the data set
What would be a one-line command to determine the species richness of all stems ( 20-cm DBH within the sample data set (gigtree.txt)?  Try this on your own, but one solution is given at the end of this session’s notes.
Counting the number of individuals per species in the sample data set

> table(tree.data$Species)
A short-cut method for counting the number of individuals per species, using the function table()
Counting the number of individuals larger than 3 diameter limits for a given species 

Create the following function in your text file of functions (i.e., “My_functions.txt”):
# count.trees() – a function to count individuals in three size classes for one species
count.trees=function(species, spp.data, dbhcutoff)

  {

    diam1=spp.data$DBH[spp.data$DBH>=dbhcutoff[1] & 
spp.data$Species==species]

    diam2=spp.data$DBH[spp.data$DBH>=dbhcutoff[2] & 
spp.data$Species==species]

    diam3=spp.data$DBH[spp.data$DBH>=dbhcutoff[3] & 
spp.data$Species==species]

    return(c(length(diam1), length(diam2), length(diam3)))

  }

> source("c:/R_functions/My_functions.txt")
> count.trees("TET2PA", tree.data, c(10,100,300))

Returns the number of stems of 
[1] 1031  478  211




TET2PA in the data set larger than 

1-cm, 10-cm, and 30-cm, respectively
Using a “for loop” 
Add the following function to the existing file, “My_functions.txt”:
# count.alltrees() – a function to count individuals in three size classes for all species

count.alltrees=function(sp.list, spp.all.data, dbhcutoff)

  {

    no.spp=length(sp.list)

    countperspp=matrix(0, nrow=no.spp, ncol=3)

    for(i in 1:no.spp)

      {

        countperspp[i,]=count.trees(sp.list[i],spp.all.data,dbhcutoff)

      }    

    colnames(countperspp)=c("N.small", "N.medium", "N.large")

    return(data.frame(sp.list, countperspp))

  }

Notice that we used two new functions:  colnames() and data.frame().

> source("c:/R_functions/My_functions.txt")
> count.alltrees(sp.list.sort, tree.data, c(10,100,300))

    sp.list N.small N.medium N.large

1    ACACME       1        1       0

2    ALCHCO       2        1       0

3    ALCHLA      15       11       1
…
226  TET2PA    1031      478     211

…
Further information & suggestions

  A useful startup procedure once R has been opened:

> setwd("c:/R_functions")  
Sets the working directory to the location of your functions
Now you can source functions without providing the entire path, e.g.:

> source("My_functions.txt")


To check your current working directory:



 > getwd()

  Hint:
One solution to the question “What would be a one-line command to determine the species richness of all stems ( 20-cm DBH within the sample data set (gigtree.txt)?” is:

> length(unique(tree.data$Species[tree.data$DBH>=200]))

SESSION 3

Calculating diversity indices

Use the function count.alltrees() to count the number of stems ( 20-cm DBH of each species (the values in the DBH column of the sample data set are given in mm).  For example:
> tree.data=read.table("c:/gigtree.txt", header=T)

Read in sample data set from Session 1
> source("c:/R_functions/My_functions.txt")

Source functions from Session 2
> sp.list=unique(tree.data$Species)

> sp.list.sort=sort(sp.list)

> counts=count.alltrees(sp.list.sort, tree.data, c(10,100,200))

> count.all.gr20=counts[,4]

Make sure the total number of stems included in count.all.gr20 is correct before proceeding.  Hint:  you could use yet another built-in R function, sum().
Calculating Shannon-Weaver (a.k.a. Shannon, Shannon-Weiner) Index

The basic formula:  H’ = - Σ pi * ln(pi)
 
…where pi is the proportion of all individuals in the sample belonging to species i 

Create the following function and save it in a new functions file (“My_diversity_functions.txt”):
# Shannon-Weaver Index
calc.shan=function(sp.counts)

  {

    shan.index=0
    N=sum(sp.counts)

    sp.counts.new=sp.counts[sp.counts>0]

    no.spp=length(sp.counts.new)

    for(i in 1:no.spp)

      {

        shan.index=shan.index+((sp.counts.new[i]/N)*log(sp.counts.new[i]/N))
       }    

    return((-1)*shan.index)

  }

Call the function with the appropriate argument within parentheses, i.e., use the column output from count.alltrees() that contains the counts of individuals within species, since the function calc.shan() expects the input to be a vector of counts (one count for each species).

> source("c:/R_functions/My_diversity_functions.txt")
> calc.shan(count.all.gr20)

Calculating Simpson’s Index

The basic formula:  D = 1 - Σ pi2
… where pi is the proportion of all individuals in the sample belonging to species i
Create the following function and save it in your diversity functions file:
# Simpson’s Index
calc.simp=function(sp.counts)

  {

    simp.index=0

    N=sum(sp.counts)

    no.spp=length(sp.counts)

    for(i in 1:no.spp)

      {

        simp.index=simp.index+((sp.counts[i]/N)*(sp.counts[i]/N))

       }    

    return(1-simp.index)

  }

> source("c:/R_functions/My_diversity_functions.txt")
> calc.simp(count.all.gr20)

Rarefaction

> x=1:10

> sample(x, 5)




Look up the function sample() in the help pages
> sample(x, 5, replace=F)

Repeat the above command several times (remember that you can re-populate the command line with the most recent command you used by pressing the up arrow key)…
> sample(x, 5, replace=T)

Repeat the above command several times…
> sample(x, 25, replace=T)

Repeat the above command several times…
The functions length(), sample(), sort() & unique() together can provide useful re-sampling, boot-strapping, jack-knifing, and randomization procedures, including rarefaction.  Here, for example, is a one-line set of commands that returns the number of species within a sample of x stems chosen at random from the entire data set:

> x=25; len=length(tree.data$Species); length(unique(tree.data$Species[sample(1:len,x)]))


Notice that two or more commands can be placed on the same line if they are separated by a semi-colon.

Examine the output from the following command to help understand what sample(1:len,x) does:
> sample(1:len,x)
Note:  Remember that you have already assigned len and x.  
What happens when you reassign these variables to new values?

If you wanted to repeatedly choose samples of x individuals you could use a for loop, as

below:

> sampz=numeric(); for(i in 1:10) sampz[i]=length(unique(tree.data$Species[sample(1:len,x)]))


Notice that you would now have sufficient data to calculate not only the mean number of species per random sample of x individuals, but also sufficient data to calculate a variance around the mean (or confidence interval, standard deviation, etc.), thereby allowing you to compare the mean with the mean of another appropriately rarefied data set.

You could also use the function sample() to return the data for x individuals sampled at random from the entire data set:

> samp.dat=tree.data[sample(1:len, x),]

Note:  Make sure len is equal to the total number of stems in the data set for the above command.

Calculating Fisher’s Alpha

The basic formula is:  S = α * ln(1 + N/α)
We want to know the value of α that satisfies the above relationship, given the number of individuals in our sample (N), and the number of species in our sample (S).  We must do this through an iterative procedure.

Let’s determine the value of Fisher’s Alpha (α) from the Gigante data set (“gigtree.txt”), using stems ( 20-cm DBH.  

First, determine the total number of stems ( 20-cm DBH in the sample data set, and assign that value to N.

Determine the total number of species included in the stems ( 20-cm DBH in the sample data set, and assign that value to S.
Create the following function and save it in your diversity functions file:
# Fisher’s alpha, calculated from counts of individuals and species
# Note that this program assumes that the true value of alpha lies within the range 
# 0.001 – 10000 (a likely assumption for local assemblages of organisms)
# The function returns “-1” if there is a problem
calc.alpha=function(n.orig, s.orig)

 {

  a=numeric()

  len.n=length(n.orig)

  len.s=length(s.orig) 

  if(len.n != len.s)

    { return(-1)  }

  for(i in 1:len.n)

   {

     if(n.orig[i]<=0 | s.orig[i]<=0 | n.orig[i]<=s.orig[i])


{ a[i]=(-1) }

     else

      {

       low.a=0.001

       high.a=10000

       low.s = low.a*log(1+(n.orig[i]/low.a))

       high.s = high.a*log(1+(n.orig[i]/high.a))


       if((s.orig[i]<=low.s) | (s.orig[i]>=high.s))

        { a[i]=(-1) }

       else

        {

         use.s=s.orig[i]+1 

         while(s.orig[i] != use.s)

          {

           use.a=(low.a+high.a)/2

           use.s=use.a*log(1+(n.orig[i]/use.a))

           if(s.orig[i]<use.s)



{ high.a=use.a }

           if(s.orig[i]>use.s)



{ low.a=use.a }

          }

         a[i]=use.a 

        }

      }

   }

   return(a)

 }
fisher
The new function calc.alpha() uses a binary search technique to estimate Fisher’s alpha from pairs of values of individuals and species.  Any number of pairs can be entered, as the vectors N (individuals) and S (species).

> source("c:/R_functions/My_diversity_functions.txt")
> calc.alpha(N,S)
Remember that you should have previously set N and S equal to their appropriate values for the sample data set; see the instructions in the very first portion of this section (“Calculating Fisher’s Alpha”)
Further information & suggestions

  Functions:

Curly brackets, “{“ and “}”, contain the commands within the text of a function.

The pound sign, “#”, indicates a comment within a function.

  Objects:
Remember that the functions objects() or ls() will tell you which objects are currently active in your R session, so if you have included all of the above diversity index functions in one file, then once that file is sourced, all the functions should be available as active objects.
  Sourcing multiple files that contain functions:
Now that you have more than one file containing functions, you could source them using the following steps:

1.  Create a file that contains source commands for all function files, e.g.:

Place only these two lines in a new file, e.g., “c:/R_functions/Functions_to_source.txt”:

source("c:/R_functions/My_functions.txt")

source("c:/R_functions/My_diversity_functions.txt")
2.  When you begin an R session, source the new file, e.g.:



> source("e:/R_functions/Functions_to_source.txt")


Now all the functions in the aforementioned files are sourced and ready to be used in the current R session.  
SESSION 4

Now that you are familiar with R and writing functions, I will assume that you can fill in the steps between the commands that I have written out in these notes...
Creating species-area curves

Species per any given sub-region of the plot

Create the following function (in a file of your choice) to determine the numbers of individuals and species, using stems equal to or larger than any size cutoff, and from any rectangular subplot of the larger sample plot (make sure you know how the variables that are passed into the function as arguments are being used inside the function):

# Counts of the total numbers of species (S) and individuals (N) in a given area
spp.per.area=function(dataset, x1, x2, y1, y2, dbhmin)

 {

  no.ind=length(dataset$Species[dataset$GX>=x1 & dataset$GX<x2 & 

dataset$GY>=y1 & dataset$GY<y2 & dataset$DBH>=dbhmin])

  no.spp=length(unique(dataset$Species[dataset$GX>=x1 & dataset$GX<x2 & 

dataset$GY>=y1 & dataset$GY<y2 & dataset$DBH>=dbhmin]))

  return(c(no.ind, no.spp))

 }

(Note that everything on the 2 lines after “no.ind” should be on 1 line in your function file; similarly, everything on the 2 lines after “no.spp” should be on 1 line your function file – page formatting in this Word document caused these 2 lines of code to expand to 4 lines.)

Source the above function and run it for a square sub-plot, e.g.:  

> spp.per.area(dataset=tree.data, x1=0, x2=100, y1=0, y2=100, dbhmin=200)

Species per area in a randomly selected square of any size

Run the following command to view 10 “random uniform” numbers:

> runif(1)
Function runif() returns uniform random numbers.  With 1 as the main argument, function runif(1) returns one uniform random number within the default range of 0 to 1.  Every time runif() is called, it returns a different random number (or numbers if more than 1 is requested).

> runif(10)
With 10 as the main argument, function runif(10) returns 10 uniform random numbers
Create a function to determine the number of individuals and the number of species from a random square sub-plot, rather than pre-assigned sub-plots (notice that a minimum dbh cutoff and the overall plot’s dimensions are supplied for the sample data set as default values in the arguments to the function):

# Counts of S and N in a randomly chosen area

spp.per.rand.sq=function(dataset, sq.size, dbhmin=200, plotdim=c(480,800))

 {

  if(sq.size>min(plotdim))

    return("You can't use a square larger than the plot.")

  xlo=(plotdim[1]-sq.size)*runif(1)

  ylo=(plotdim[2]-sq.size)*runif(1)

  xhi=xlo+sq.size

  yhi=ylo+sq.size

  return(spp.per.area(dataset, x1=xlo, x2=xhi, y1=ylo, y2=yhi, dbhmin))

}

Source and run, e.g.:

> spp.per.rand.sq(tree.data, 100)

Each time you run spp.per.rand.sq(), a new square sub-plot will be assessed.

Mean and standard deviation of the total number of species and the total number of individuals for a square of a given size

Create a function to calculate the mean numbers of total individuals and species per hectare for randomly generated sub-plots, along with their standard deviations; the argument “replicates” will be the number of times random hectares are selected, and species counted in each:
# Mean and st. dev. for S and N throughout the plot
mean.spp.per.sq=function(dataset, sq.size=100, dbhmin=200, plotdim=c(480,800), 
replicates=10)

 {

  spcount=matrix(ncol=4, nrow=replicates)

  for(i in 1:replicates)

    spcount[i,]=spp.per.rand.sq(dataset, sq.size, dbhmin, plotdim)

  return(c(mean(spcount[,1]), sd(spcount[,1]), mean(spcount[,2]), sd(spcount[,2])))

 }

Source and run, e.g.:

> mean.spp.per.sq(tree.data)

Be sure to notice that we are using functions to call other functions in the above exercises.
Create a matrix of species-area information for varying areas

Create the following function; note that “area” will be a vector listing a series of sub-plot dimensions, in meters; each sub-plot size will in turn be submitted to mean.spp.per.sq():
# Mean and st. dev. for S and N throughout the plot, at three spatial scales
spp.area.sq=function(dataset, area, dbhmin=200, plotdim=c(480,800), replicates=10)

 {

  no.quadratsizes=length(area)

  m=matrix(nrow=length(area), ncol=5)

  sp.per.sq=data.frame(m)  

  for(i in 1:length(area))

   {

     hectares=area[i]*area[i]/10000

     sp.per.sq[i,1]=hectares

     sp.per.sq[i,2:5]=mean.spp.per.sq(dataset, sq.size=area[i], dbhmin=dbhmin, 
plotdim=plotdim, replicates=replicates)

   }

  colnames(sp.per.sq)=c("area_(ha)", "mean.ind_(N)", "sd.ind_(N)", "mean.spp_(S)", 
"sd.spp_(S)")

  return(sp.per.sq)

 }

> spp.area.sq(tree.data, area=c(20,50,100))
Calling the function spp.area.sq() for 3 sub-plot sizes
Create a species area curve

Generate mean counts of individuals and species for sub-plots of various sizes:

> gig.spp.area=spp.area.sq(tree.data, area=c(10,20,30,40,50,60,70,80,90,100,200,300,400), 
replicates=15)

> gig.spp.area

   area_(ha) mean.ind_(N) sd.ind_(N) mean.spp_(S) sd.spp_(S)

1       0.01     1.333333  0.8164966     1.333333  0.8164966

2       0.04     5.400000  2.3237900     4.333333  1.8387366

3       0.09    11.866667  4.0508670     9.866667  3.0674947

4       0.16    21.600000  7.1294159    14.666667  3.9036003

5       0.25    34.266667  5.1055525    21.866667  2.9244454

6       0.36    49.000000  8.1152414    27.200000  6.1202241

7       0.49    62.533333  7.4341554    31.000000  5.8309519

8       0.64    84.200000  9.1744988    39.066667  3.8631347

9       0.81   102.533333  8.1052599    38.933333  5.4963191

10      1.00   130.133333  9.5608328    43.333333  4.0824829

11      4.00   537.600000 19.6097643    86.933333  7.1360920

12      9.00  1176.400000 22.3632351   110.400000  2.9952343

13     16.00  2109.000000 26.1752337   125.666667  1.8771813

Note:  Your output values will not exactly match the values above, since each time we call spp.per.rand.sq() we use a different sub-plot or set of sub-plots.
Plot species area curves:

	> plot(gig.spp.area$area,
   gig.spp.area$mean.spp)


	> plot(log10(gig.spp.area$area),
   log10(gig.spp.area$mean.spp))



	[image: image1.png]4%

00l

T T T
08 09 oF

dds usewigease dds BIB

15

10

gig spp.areatarea




	[image: image2.png]4

T T
gl [

(dds usewigeale dds BIB)0 | Bo|

g0

10

05

00

-05

-10

-15

=20

log10(gig.spp.area$area)






Use the linear model function lm() to estimate the slope of the species-area curve:
> fit=lm(log10(gig.spp.area$mean.spp)~log10(gig.spp.area$area))

> fit

Call:

lm(formula = log10(gig.spp.area$mean.spp) ~ log10(gig.spp.area$area))

Coefficients:

             (Intercept)  log10(gig.spp.area$area)  

                  1.5795                    0.5916  

The Arrhenius species-area curve is given by:  


S = cAz   or   Log10(S) = Log10(c) + z * Log10(A)

The output from the linear model above means that the species-area curve for our sample data set is:  

Log10(S) = 1.5795 + 0.5916 * Log10(A)


     or…


S = 37.9752 * A0.5916
Hint:  Log10(c) = 1.5795, and solve for c using the following command:

> 10^1.5795
Use the abline() function to add a line corresponding to the linear fit through the species-area curve: 

	> abline(fit)



	[image: image3.png]4

T T
gl [

(dds usewigeale dds BIB)0 | Bo|

g0

10

05

00

-05

-10

-15

=20

log10(gig.spp.area$area)






Appendix 1.  Archive of multi-line functions created in this R Self-tutorial.
The principle functions that we created during this 4-session introduction to R are provided below and could be copied from here, pasted into a single text file (e.g., “My_functions.txt” or “My_functions.r”), and saved.  That text file could then be sourced to make these functions available within an R session:

# count.trees() – a function to count individuals in three size classes for one species

count.trees=function(species, spp.data, dbhcutoff)

  {

    diam1=spp.data$DBH[spp.data$DBH>=dbhcutoff[1] & spp.data$Species==species]

    diam2=spp.data$DBH[spp.data$DBH>=dbhcutoff[2] & spp.data$Species==species]

    diam3=spp.data$DBH[spp.data$DBH>=dbhcutoff[3] & spp.data$Species==species]

    return(c(length(diam1), length(diam2), length(diam3)))

  }

# count.alltrees() – a function to count individuals in three size classes for all species

count.alltrees=function(sp.list, spp.all.data, dbhcutoff)

  {

    no.spp=length(sp.list)

    countperspp=matrix(0, nrow=no.spp, ncol=3)

    for(i in 1:no.spp)

      {

        countperspp[i,]=count.trees(sp.list[i],spp.all.data,dbhcutoff)

      }    

    colnames(countperspp)=c("N.small", "N.medium", "N.large")

    return(data.frame(sp.list, countperspp))

  }

# Shannon-Weaver Index

calc.shan=function(sp.counts)

  {

    shan.index=0

    N=sum(sp.counts)

    sp.counts.new=sp.counts[sp.counts>0]

    no.spp=length(sp.counts.new)

    for(i in 1:no.spp)

      {

        shan.index=shan.index+((sp.counts.new[i]/N)*log(sp.counts.new[i]/N))

       }    

    return((-1)*shan.index)

  }

# Simpson’s Index

calc.simp=function(sp.counts)

  {

    simp.index=0

    N=sum(sp.counts)

    no.spp=length(sp.counts)

    for(i in 1:no.spp)

      {

        simp.index=simp.index+((sp.counts[i]/N)*(sp.counts[i]/N))

       }    

    return(1-simp.index)

  }

# Fisher’s alpha, calculated from counts of individuals and species
# Note that this program assumes that the true value of alpha lies within the range 
# 0.001 – 10000 (a likely assumption for local assemblages of organisms)
# The function returns “-1” if there is a problem
calc.alpha=function(n.orig, s.orig)

 {

  a=numeric()

  len.n=length(n.orig)

  len.s=length(s.orig) 

  if(len.n != len.s)

    { return(-1)  }

  for(i in 1:len.n)

   {

     if(n.orig[i]<=0 | s.orig[i]<=0 | n.orig[i]<=s.orig[i])


{ a[i]=(-1) }

     else

      {

       low.a=0.001

       high.a=10000

       low.s = low.a*log(1+(n.orig[i]/low.a))

       high.s = high.a*log(1+(n.orig[i]/high.a))


       if((s.orig[i]<=low.s) | (s.orig[i]>=high.s))

        { a[i]=(-1) }

       else

        {

         use.s=s.orig[i]+1 

         while(s.orig[i] != use.s)

          {

           use.a=(low.a+high.a)/2

           use.s=use.a*log(1+(n.orig[i]/use.a))

           if(s.orig[i]<use.s)



{ high.a=use.a }

           if(s.orig[i]>use.s)



{ low.a=use.a }

          }

         a[i]=use.a 

        }

      }

   }

   return(a)

 }

# Counts of the total numbers of species (S) and individuals (N) in a given area

spp.per.area=function(dataset, x1, x2, y1, y2, dbhmin)

 {

  no.ind=length(dataset$Species[dataset$GX>=x1 & dataset$GX<x2 & 

dataset$GY>=y1 & dataset$GY<y2 & dataset$DBH>=dbhmin])

  no.spp=length(unique(dataset$Species[dataset$GX>=x1 & dataset$GX<x2 & 

dataset$GY>=y1 & dataset$GY<y2 & dataset$DBH>=dbhmin]))

  return(c(no.ind, no.spp))

 }

# Counts of S and N in a randomly chosen area

spp.per.rand.sq=function(dataset, sq.size, dbhmin=200, plotdim=c(480,800))

 {

  if(sq.size>min(plotdim))

    return("You can't use a square larger than the plot.")

  xlo=(plotdim[1]-sq.size)*runif(1)

  ylo=(plotdim[2]-sq.size)*runif(1)

  xhi=xlo+sq.size

  yhi=ylo+sq.size

  return(spp.per.area(dataset, x1=xlo, x2=xhi, y1=ylo, y2=yhi, dbhmin))

}

# Mean and st. dev. for S and N throughout the plot, at three spatial scales

spp.area.sq=function(dataset, area, dbhmin=200, plotdim=c(480,800), replicates=10)

 {

  no.quadratsizes=length(area)

  m=matrix(nrow=length(area), ncol=5)

  sp.per.sq=data.frame(m)  

  for(i in 1:length(area))

   {

     hectares=area[i]*area[i]/10000

     sp.per.sq[i,1]=hectares

     sp.per.sq[i,2:5]=mean.spp.per.sq(dataset, sq.size=area[i], dbhmin=dbhmin, 

plotdim=plotdim, replicates=replicates)

   }

  colnames(sp.per.sq)=c("area_(ha)", "mean.ind_(N)", "sd.ind_(N)", "mean.spp_(S)", 
"sd.spp_(S)")

  return(sp.per.sq)

 }

- 2 -


